Journal of Chinese Pharmaceutical Sciences ›› 2023, Vol. 32 ›› Issue (7): 551-559.DOI: 10.5246/jcps.2023.07.046
• Original articles • Previous Articles Next Articles
Bo Fan#, Xiao Yang#, Shuang Hu*()
Received:
2023-01-27
Revised:
2023-03-14
Accepted:
2023-04-15
Online:
2023-07-31
Published:
2023-07-31
Contact:
Shuang Hu
About author:
Supporting:
Bo Fan, Xiao Yang, Shuang Hu. Vortex-assisted switchable solvent liquid-phase microextraction for preconcentration of cinnamic acid derivatives in traditional Chinese medicine[J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(7): 551-559.
[1] |
Ruwizhi, N.; Aderibigbe, B.A. Cinnamic acid derivatives and their biological efficacy. Int. J. Mol. Sci. 2020, 21, 5712.
|
[2] |
De, P.; Baltas, M.; Bedos-Belval, F. Cinnamic acid derivatives as anticancer agents-a review. Curr. Med. Chem. 2011, 18, 1672–1703
|
[3] |
Gryko, K.; Kalinowska, M.; Ofman, P.; Choińska, R.; Świderski, G.; Świsłocka, R.; Lewandowski, W. Natural cinnamic acid derivatives: a comprehensive study on structural, anti/pro-oxidant, and environmental impacts. Materials (Basel). 2021, 14, 6098.
|
[4] |
Hu, S.; Yang, X.; Xue, J.; Chen, X.; Bai, X.H.; Yu, Z.H. Graphene/dodecanol floating solidification microextraction for the preconcentration of trace levels of cinnamic acid derivatives in traditional Chinese medicines. J. Sep. Sci. 2017, 40, 2959–2966.
|
[5] |
Jin, W.; Zhou, T.; Li, G. Recent advances of modern sample preparation techniques for traditional Chinese medicines. J. Chromatogr. A. 2019, 1606, 460377.
|
[6] |
Tambe, S.; Blott, H.; Fülöp, A.; Spang, N.; Flottmann, D.; Bräse, S.; Hopf, C.; Junker, H.D. Structure-performance relationships of phenyl cinnamic acid derivatives as MALDI-MS matrices for sulfatide detection. Anal. Bioanal. Chem. 2017, 409, 1569–1580.
|
[7] |
Yan, Y.; Chen, X.; Hu, S.; Bai, X. Applications of liquid-phase microextraction techniques in natural product analysis: a review. J. Chromatogr. A. 2014, 1368, 1–17.
|
[8] |
Vahid, S.; Ali, A.; Anahita, N. Application of hollow fiber liquid phase microextraction and dispersive liquid-liquid microextraction techniques in analytical toxicology. J. Food Drug Anal. 2016, 24, 264–276.
|
[9] |
Hou-Kuang, Shih. A novel fatty-acid-based in-tube dispersive liquid-liquid microextraction technique for the rapid determination of nonylphenol and 4-tert-octylphenol in aqueous samples using high-performance liquid chromatography-ultraviolet detection. Anal. Chimica Acta. 2015, 854, 70–77.
|
[10] |
Rezaee, M.; Assadi, Y.; Milani Hosseini, M.R.; Aghaee, E.; Ahmadi, F.; Berijani, S. Determination of organic compounds in water using dispersive liquid-liquid microextraction. J. Chromatogr. A. 2006, 1116, 1–9.
|
[11] |
Jiang, Y.H.; Tang, T.T.; Cao, Z.; Shi, G.Y.; Zhou, T.S. Determination of three estrogens and bisphenol A by functional ionic liquid dispersive liquid-phase microextraction coupled with ultra-high performance liquid chromatography and ultraviolet detection. J. Sep. Sci. 2015, 38, 2158–2166.
|
[12] |
Mohebbi, A.; Ali Farajzadeh, M.; Nemati, M.; Sarhangi, N.; Afshar Mogaddam, M.R. Development of green sodium sulfate-induced solidification of floating organic droplets-dispersive liquid phase microextraction method: application to extraction of four antidepressants. Biomed. Chromatogr. 2019, 33, e4642.
|
[13] |
Hansen, F.A.; Pedersen-Bjergaard, S. Emerging extraction strategies in analytical chemistry. Anal. Chem. 2020, 92, 2–15.
|
[14] |
Jessop, P.G.; Heldebrant, D.J.; Li, X.W.; Eckert, C.A.; Liotta, C.L. Green chemistry: reversible nonpolar-to-polar solvent. Nature. 2005, 436, 1102.
|
[15] |
Erarpat, S.; Bodur, S.; Öztürk Er, E.; Bakırdere, S. Combination of ultrasound-assisted ethyl chloroformate derivatization and switchable solvent liquid-phase microextraction for the sensitive determination of l-methionine in human plasma by GC-MS. J. Sep. Sci. 2020, 43, 1100–1106.
|
[16] |
Wang, X.P.; Wang, R.Q.; Pan, X.Y.; Xing, R.R.; Yang, L.; Chen, X.; Hu, S. Preconcentration of liposoluble constituents in Salvia Miltiorrhiza using acid-assisted liquid phase microextraction based on a switchable deep eutectic solvent. J. Chromatogr. A. 2022, 1666, 462858.
|
[17] |
Lebedinets, S.; Vakh, C.; Cherkashina, K.; Pochivalov, A.; Moskvin, L.; Bulatov, A. Stir membrane liquid phase microextraction of tetracyclines using switchable hydrophilicity solvents followed by high-performance liquid chromatography. J. Chromatogr. A. 2020, 1615, 460743.
|
[18] |
Musarurwa, H.; Tavengwa, N.T. Switchable solvent-based micro-extraction of pesticides in food and environmental samples. Talanta. 2021, 224, 121807.
|
[19] |
Hassan, M.; Uzcan, F.; Alshana, U.; Soylak, M. Switchable-hydrophilicity solvent liquid-liquid microextraction prior to magnetic nanoparticle-based dispersive solid-phase microextraction for spectrophotometric determination of erythrosine in food and other samples. Food Chem. 2021, 348, 129053.
|
[20] |
Hu, S.; Xue, J.; Yang, X.; Chen, X.; Wang, R.Q.; Bai, X.H. Sodium dodecyl sulfate sensitized switchable solvent liquid-phase microextraction for the preconcentration of protoberberine alkaloids in Rhizoma coptidis. J Sep Sci. 2018, 18, 3614–3621.
|
[21] |
Lasarte-Aragonés, G.; Lucena, R.; Cárdenas, S.; Valcárcel, M. Use of switchable solvents in the microextraction context. Talanta. 2015, 131, 645–649.
|
[22] |
Ezoddin, M.; Abdi, K.; Lamei, N. Development of air assisted liquid phase microextraction based on switchable-hydrophilicity solvent for the determination of palladium in environmental samples. Talanta. 2016, 153, 247–252.
|
[1] | Mengyao Wu, Lu Liu, Peng Zhang, Lele Zhang, Yun Gong, Xiuwei Yang. Exploring the mechanism of Buxue Yimu Pills on postpartum abdominal pain through network pharmacology and experimental validation [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 691-703. |
[2] | Ping Shang, Lin Liu, Yi Fang. Investigating the mechanism of action of Gui Zhi Fu Ling Wan in the treatment of endometriosis based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 704-719. |
[3] | Gedi Zhang, Gengxin Liu, Ziyou Yan. Therapeutic efficacy evaluation and mechanism of action based on meta-analysis and network pharmacology of Li Chong Decoction (Bolus) for cancer treatment [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 720-735. |
[4] | Yonghui Ge, Ling Wang, Su Xu, Tianli Jiang, Jinhua Wang. Direct identification of volatile compounds in the artificially cultivated and wild Chinese medicinal materials (Semiliquidambar cathayesis) by headspace-gas chromatography-ion mobility spectrometry [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(5): 392-405. |
[5] | Yumiti Taxifulati, Yue Zhou, Sheng Han, Kexin Du, Yaoyao Yang, Lin Hu, Bo Zheng, Xiaodong Guan, Haishaerjiang Wushouer, Luwen Shi. Trends of consumption and expenditure of antibacterial traditional Chinese medicine in secondary and tertiary hospitals in China: an analysis of pharmaceutical sales data, 2011–2015 [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(4): 298-307. |
[6] | Kunpeng Yao, Daoping Zhang, Qili Liu, Huzhi Cai, Qingyang Chen, Xinyu Chen. Integrating bioinformatics to identify and analyze feature genes of acute myocardial infarction and potential Chinese medicine prediction [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(12): 912-927. |
[7] | Tao Gao, Lei Liu, Yan Wu, Quan Du. Preclinical safety evaluation of WangShiBaoChiWan [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(1): 31-46. |
[8] | Mengqiu Lu, Haizhen Liang, Pengfei Tu, Yong Jiang. Pharmacodynamic comparison of two different source plants of Murrayae Folium et Cacumen [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(1): 49-57. |
[9] | Sicong Tian, Jing Xue, Hui Song, Quan Du. Regulatory effects of traditional Chinese medicine on intestinal flora [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(3): 161-175. |
[10] | Haoyan Jiao, Shengmei Xu, Chunlin Fan, Qingwen Zhang, Ying Wang. Chromatographic fingerprint analysis and quantitative evaluate the rhizomes of Alpinia officinarum Hance (lesser galangal) [J]. Journal of Chinese Pharmaceutical Sciences, 2019, 28(10): 728-738. |
[11] | Ah-Ng Tony Kong, Siwang Yu. Cancers chemoprevention by dietary phytochemicals and traditional Chinese medicines: epigenetics and cellular signaling pathways [J]. Journal of Chinese Pharmaceutical Sciences, 2016, 25(4): 233-234. |
[12] | Yaya Gaoyang, Chenqi Zhu, Shuang Guo, Bailing Qiu, Di Wu, Ye Gao, Qihui Liang, Nanyin Han, Ping Zhang . Determination of gallic acid in the traditional Chinese medicine by high-performance capillary electrophoresis [J]. Journal of Chinese Pharmaceutical Sciences, 2016, 25(10): 747-753. |
[13] | Yan Zhao, Min Liu, Zhao Yang, Shaohua Wang, Yang Li, Guanhua Du. Simultaneous quantification of eighteen constituents in traditional Chinese medicine XiaoShuanTongLuo by UPLC-MS/MS [J]. Journal of Chinese Pharmaceutical Sciences, 2014, 23(4): 225-232. |
[14] | Ping Chen, Peipei Wang, Guohua Shao, Lan Xiang*. Acetylcholinesterase inhibitory activities of 48 traditional Chinese medicinal herbs [J]. , 2013, 22(1): 106-109. |
[15] |
Xing-Xin Yang, Yan-Li Zhang, Xiao-Xia Zhang, Xiao-Ni Li*.
Cell membrane chromatography and its application in the analysis of bioactive ingredients of TCMs [J]. , 2011, 20(1): 20-25. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||