Journal of Chinese Pharmaceutical Sciences ›› 2022, Vol. 31 ›› Issue (6): 441-451.DOI: 10.5246/jcps.2022.06.038
• Original articles • Previous Articles Next Articles
Suqiong Huang#, Jingyuan Wan#, Tingting Du#, Tao Gong, Jing Zhang, Xinhui Jiang*()
Received:
2021-12-24
Revised:
2022-01-15
Accepted:
2022-03-30
Online:
2022-06-30
Published:
2022-06-30
Contact:
Xinhui Jiang
About author:
Supporting:
Suqiong Huang, Jingyuan Wan, Tingting Du, Tao Gong, Jing Zhang, Xinhui Jiang. The relationship between the contents of 13 amino acids in brain tissues and the progression of NAFLD via C57BL/6 model mice[J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(6): 441-451.
Table 1. The contents of 13 amino acids in brain tissues of C57BL/6 mice at different feeding cycles and their P values as compared with those in the 3-week group (mean ± SD).
[1] |
Masuoka, H.C.; Chalasani, N. Nonalcoholic fatty liver disease: an emerging threat to obese and diabetic individuals. Ann. NY Acad. Sci. 2013, 1281, 106–122.
|
[2] |
Whalley, S.; Puvanachandra, P.; Desai, A.; Kennedy, H. Hepatology outpatient service provision in secondary care: a study of liver disease incidence and resource costs. Clin. Med. Lond. Engl. 2007, 7, 119–124.
|
[3] |
Byrne, C.D.; Targher, G. NAFLD: a multisystem disease. J. Hepatol. 2015, 62, S47–S64.
|
[4] |
Jornayvaz, F.R.; Shulman, G.I. Diacylglycerol activation of protein kinase cε and hepatic insulin resistance. Cell Metab. 2012, 15, 574–584.
|
[5] |
Friedman, S.L.; Neuschwander-Tetri, B.A.; Rinella, M.; Sanyal, A.J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med. 2018, 24, 908–922.
|
[6] |
Ekstedt, M.; Franzén, L.E.; Mathiesen, U.L.; Thorelius, L.; Holmqvist, M.; Bodemar, G.; Kechagias, S. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatol. Baltim. Md. 2006, 44, 865–873.
|
[7] |
Mittal, S.; El-Serag, H.B.; Sada, Y.H.; Kanwal, F.; Duan, Z.G.; Temple, S.; May, S.B.; Kramer, J.R.; Richardson, P.A.; Davila, J.A. Hepatocellular carcinoma in the absence of cirrhosis in United States veterans is associated with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 2016, 14, 124–131.e1.
|
[8] |
Dyson, J.; Jaques, B.; Chattopadyhay, D.; Lochan, R.; Graham, J.; Das, D.; Aslam, T.; Patanwala, I.; Gaggar, S.; Cole, M.; Sumpter, K.; Stewart, S.; Rose, J.; Hudson, M.; Manas, D.; Reeves, H.L. Hepatocellular cancer: the impact of obesity, type 2 diabetes and a multidisciplinary team. J. Hepatol. 2014, 60, 110–117.
|
[9] |
Singh, S.; Allen, A.M.; Wang, Z.; Prokop, L.J.; Murad, M.H.; Loomba, R. Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies. Clin. Gastroenterol. Hepatol. 2015, 13, 643–654.e9.
|
[10] |
Huang, P.L. A comprehensive definition for metabolic syndrome. Dis. Models Mech. 2009, 2, 231–237.
|
[11] |
Käräjämäki, A.J.; Bloigu, R.; Kauma, H.; Kesäniemi, Y.A.; Koivurova, O.P.; Perkiömäki, J.; Huikuri, H.; Ukkola, O. Non-alcoholic fatty liver disease with and without metabolic syndrome: different long-term outcomes. Metabolism. 2017, 66, 55–63.
|
[12] |
Tsuneto, A.; Hida, A.; Sera, N.; Imaizumi, M.; Akahoshi, M. Fatty liver incidence and predictive variables. Hypertens. Res. 2010, 33, 638–43.
|
[13] |
Blachier, M.; Leleu, H.; Peck-Radosavljevic, M.; Valla, D.C.; Roudot-Thoraval, F. The burden of liver disease in Europe: a review of available epidemiological data. J. Hepatol. 2013, 58, 593–608.
|
[14] |
Loomba, R.; Abraham, M.; Unalp, A.; Wilson, L.; Lavine, J.; Doo, E.; Bass, N.M.; Nonalcoholic Steatohepatitis Clinical Research Network. Association between diabetes, family history of diabetes, and risk of nonalcoholic steatohepatitis and fibrosis. Hepatol. Baltim. Md. 2012, 56, 943–951.
|
[15] |
Holecek, M. Three targets of branched-chain amino acid supplementation in the treatment of liver disease. Nutrition. 2010, 26, 482–490.
|
[16] |
Rossi Fanelli, F.; Cangiano, C.; Capocaccia, L.; Cascino, A.; Ceci, F.; Muscaritoli, M.; Giunchi, G. Use of branched chain amino acids for treating hepatic encephalopathy: clinical experiences. Gut. 1986, 27, 111–115.
|
[17] |
Skalská, H.; Mráz, J.; Holeček, M. Plasma amino acid levels after carbon tetrachloride induced acute liver damage. A dose-response and time-response study in rats. Amino. Acids. 1999, 16, 1–11.
|
[18] |
Heberer, M.; Talke, H.; Maier, K.P.; Gerok, W. Metabolism of phenylalanine in liver diseases. Biochem. Biophys. Rep. 1980, 58, 1189–1196.
|
[19] |
Cascino, A.; Cangiano, C.; Calcaterra, V.; Rossi-Fanelli, F.; Capocaccia, L. Plasma amino acids imbalance in patients with liver disease. Am. J. Dig. Dis. 1978, 23, 591–598.
|
[20] |
Holeček, M. Relation between glutamine, branched-chain amino acids, and protein metabolism. Nutrition. 2002, 18, 130–133.
|
[21] |
Bernardini, P.; Fischer, J.E. Amino acid imbalance and hepatic encephalopathy. Annu. Rev. Nutr. 1982, 2, 419–454.
|
[22] |
Paul, H.S.; Adibi, S.A. Activation of hepatic branched chain alpha-keto acid dehydrogenase by a skeletal muscle factor. J. Biol. Chem. 1982, 257, 12581–12588.
|
[23] |
Damuni, Z.; Merryfield, M.L.; Humphreys, J.S.; Reed, L.J. Purification and properties of branched-chain alpha-keto acid dehydrogenase phosphatase from bovine kidney. Proc. Natl. Acad. Sci. USA. 1984, 81, 4335–4338.
|
[24] |
Aguirre, A.; Yoshimura, N.; Westman, T.; Fischer, J.E. Plasma amino acids in dogs with two experimental forms of liver damage. J. Surg. Res. 1974, 16, 339–345.
|
[25] |
McCullough, A.J.; Czaja, A.J.; Jones, J.D.; Go, V.L. The nature and prognostic significance of serial amino acid determinations in severe chronic active liver disease. Gastroenterology. 1981, 81, 645–652.
|
[26] |
Lieber, C.S.; Leo, M.A.; Mak, K.M.; Xu, Y.Q.; Cao, Q.; Ren, C.L.; Ponomarenko, A.; DeCarli, L.M. Model of nonalcoholic steatohepatitis. Am. J. Clin. Nutr. 2004, 79, 502–509.
|
[27] |
Soeters, P.B.; Weir, G.; Ebeid, A.M.; Fischer, J.E. Insulin, glucagon, portal systemic shunting, and hepatic failure in the dog. J. Surg Res. 1977, 23, 183–188.
|
[28] |
Nakaya, Y.; Okita, K.; Suzuki, K.; Moriwaki, H.; Kato, A.; Miwa, Y.; Shiraishi, K.; Okuda, H.; Onji, M.; Kanazawa, H.; Tsubouchi, H.; Kato, S.; Kaito, M.; Watanabe, A.; Habu, D.; Ito, S.; Ishikawa, T.; Kawamura, N.; Arakawa, Y. BCAA-enriched snack improves nutritional state of cirrhosis. Nutrition. 2007, 23, 113–120.
|
[29] |
Muto, Y.; Sato, S.; Watanabe, A.; Moriwaki, H.; Suzuki, K.; Kato, A.; Kato, M.; Nakamura, T.; Higuchi, K.; Nishiguchi, S.; Kumada, H.;. Effects of oral branched-chain amino acid granules on event-free survival in patients with liver cirrhosis. Clin. Gastroenterol. Hepatol. 2005, 3, 705–713.
|
[30] |
Kuwahata, M.; Yoshimura, T.; Sawai, Y.; Amano, S.; Tomoe, Y.; Segawa, H.; Tatsumi, S.; Ito, M.; Ishizaki, S.; Ijichi, C.; Sonaka, I.; Oka, T.; Miyamoto, K.I. Localization of polypyrimidine-tract-binding protein is involved in the regulation of albumin synthesis by branched-chain amino acids in HepG2 cells. J. Nutr. Biochem. 2008, 19, 438–447.
|
[31] |
Kuwahata, M.; Kubota, H.; Kanouchi, H.; Ito, S.; Ogawa, A.; Kobayashi, Y.; Kido, Y. Supplementation with branched-chain amino acids attenuates hepatic apoptosis in rats with chronic liver disease. Nutr. Res. 2012, 32, 522–529.
|
[32] |
Ikehara, O.; Kawasaki, N.; Maezono, K.; Komatsu, M.; Konishi, A. Acute and chronic treatment of L-isoleucine ameliorates glucose metabolism in glucose-intolerant and diabetic mice. Biol. Pharm. Bull. 2008, 31, 469–472.
|
[33] |
Korenaga, K.; Korenaga, M.; Uchida, K.; Yamasaki, T.; Sakaida, I. Effects of a late evening snack combined with α-glucosidase inhibitor on liver cirrhosis. Hepatol. Res. 2008, 38, 1087–1097.
|
[34] |
Kawaguchi, T.; Nagao, Y.; Matsuoka, H.; Ide, T.; Sata, M. Branched-chain amino acid-enriched supplementation improves insulin resistance in patients with chronic liver disease. Int. J. Mol. Med. 2008, 22, 105–112.
|
[35] |
Ono, J.; Hutson, D.G.; Dombro, R.S.; Levi, J.U.; Livingstone, A.; Zeppa, R. Tryptophan and hepatic coma. Gastroenterology. 1978, 74, 196–200.
|
[36] |
Chang, Y.Y.; Chou, C.H.; Chiu, C.H.; Yang, K.T.; Lin, Y.L.; Weng, W.L.; Chen, Y.C. Preventive effects of taurine on development of hepatic steatosis induced by a high-fat/cholesterol dietary habit. J. Agric. Food Chem. 2011, 59, 450–457.
|
[37] |
Vijaimohan, K.; Jainu, M.; Sabitha, K.E.; Subramaniyam, S.; Anandhan, C.; Shyamala Devi, C.S. Beneficial effects of alpha linolenic acid rich flaxseed oil on growth performance and hepatic cholesterol metabolism in high fat diet fed rats. Life Sci. 2006, 79, 448–454.
|
[38] |
Miyata, M.; Funaki, A.; Fukuhara, C.; Sumiya, Y.; Sugiura, Y. Taurine attenuates hepatic steatosis in a genetic model of fatty liver disease. J. Toxicol. Sci. 2020, 45, 87–94.
|
[39] |
Tang, R.; Yang, Q.; Lin, S.; Feng, Y.; Yang, J.; Lv, Q.; Wu, G.; Hu, J. Preventive or curative administration of taurine regulates lipid metabolism in the liver of rats with alcoholic liver disease. Adv. Exp. Med. Biol. 2019, 1155, 119–131.
|
[40] |
Zhao, D.; Lv, Q.; Yang, J.; Wu, G.; Liu, M.; Yang, Q.; Han, J.; Feng, Y.; Lin, S.; Hu, J. Taurine improves lipid metabolism and skeletal muscle sensitivity to insulin in rats fed with high sugar and high fat diet. Adv. Exp. Med. Biol. 2019, 1155, 133–146.
|
[41] |
Li, K.; Wang, D.; Zhou, X.; Shao, J.; Li, Y.; Liu, X.; Zhang, C.; Zuo, E.; Shi, X.; Piao, F.; Li, S. Taurine protects against arsenic-induced apoptosis via PI3K/Akt pathway in primary cortical neurons. Adv. Exp. Med. Biol. 2019, 1155, 747–754.
|
[42] |
Mantena, S.K.; King, A.L.; Andringa, K.K.; Eccleston, H.B.; Bailey, S.M. Mitochondrial dysfunction and oxidative stress in the pathogenesis of alcohol- and obesity-induced fatty liver diseases. Free. Radic. Biol. Med. 2008, 44, 1259–1272.
|
[43] |
Li, S.; Liao, X.; Meng, F.; Wang, Y.; Sun, Z.; Guo, F.; Li, X.; Meng, M.; Li, Y.; Sun, C. Therapeutic role of ursolic acid on ameliorating hepatic steatosis and improving metabolic disorders in high-fat diet-induced non-alcoholic fatty liver disease rats. PLoS One. 2014, 9, e86724.
|
[44] |
Anholt, R.R.; De Souza, E.B.; Oster-Granite, M.L.; Snyder, S.H. Peripheral-type benzodiazepine receptors: autoradiographic localization in whole-body sections of neonatal rats. J. Pharmacol. Exp. Ther. 1985, 233, 517–526.
|
[45] |
Castelli, M.P.; Ingianni, A.; Stefanini, E.; Gessa, G.L. Distribution of GABAB receptor mRNAs in the rat brain and peripheral organs. Life Sci. 1999, 64, 1321–1328.
|
[46] |
Gardner, L.B.; Hori, T.; Chen, F.; Baine, A.M.; Hata, T.; Uemoto, S.; Nguyen, J.H. Effect of specific activation of γ-aminobutyric acid receptor in vivo on oxidative stress-induced damage after extended hepatectomy. Hepatol. Res. 2012, 42, 1131–1140.
|
[1] | Haoxin Du, Qi Bao, Huangqianyu Li, Yichen Zhang, Haishaerjiang Wushouer, Luwen Shi, Xiaodong Guan. Health status of middle-aged and elderly cancer survivors in China [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 744-754. |
[2] | Eric Wei Chiang Chan, Ying Ki Ng, Hung Tuck Chan, Siu Kuin Wong. An overview of flavonoids from Sophora flavescens (kushen) with some emphasis on the anticancer properties of kurarinone and sophoraflavanone G [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(8): 603-615. |
[3] | Wen Lv, Ying Fu. Advances in immune-targeted therapy for Graves' ophthalmopathy [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(8): 616-625. |
[4] | Yuxia Zhu, Lingjian Zhang, Yiming Hu, Weihua Liu, Liping Guan, Lin Lin. Study on synthesis of naringenin derivatives and cholinesterase inhibitory activity in marine Chinese medicine [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(8): 636-644. |
[5] | Huimin Wang, Yuying Zhao, Xiaoyan Xu, Humin Xie, Meiting Jiang, Hongda Wang, Bei Xu, Xiaohang Li, Simiao Wang, Boxue Chen, Feifei Yang, Wenzhi Yang. Steaming-induced conversion of the volatile components for P. ginseng, P. quinquefolius, and P. notoginseng by headspace sampling gas chromatography-mass spectrometry (HS-GC-MS) and untargeted metabolomics analysis [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(8): 645-664. |
[6] | Weiwei Xie, Jian Liu, Yuqian Zhang, Zhiqing Zhang, Yiran Jin. A case of anaphylactic shock caused by iodixanol during transjugular intrahepatic portosystemic shunt and literature analysis [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(8): 677-682. |
[7] | Fan Wang, Ruili Li, Wenjun Wang, Xiaoyan Zhou, Meiyou Liu, Jinyi Zhao, Aidong Wen, Jingwen Wang, Yanyan Jia. α-Boswellic acid ameliorates acute kidney injury by inhibiting the TLR4-mediated inflammatory pathway [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(7): 539-550. |
[8] | Wentao Zhu, Wanglong Hong, Miaomiao Zheng, Guoqiang Ma, Aizong Shen. Combination of pembrolizumab and chemotherapy as first-line treatment in advanced triple-negative breast cancer: a cost-effectiveness analysis [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(7): 587-597. |
[9] | Kaixiang Deng, Jingzhou Peng, Meiquan Zhang, Huijuan Lin, Xiaohua Wang, Daoxing He, Junming Zhu, Mingguang Chen, Jin Huang. Oyster peptide ameliorates hepatic fibrosis through the NF-κB/iNOS signaling pathway [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(6): 435-445. |
[10] | Han Wang, Fanglong Li, Aga Er-bu, Xiaoxia Liang, Geng Sang, Car Rangnanjia. The in vitro antioxidant activities of the ethanol extract and its different polar fractions from Ephedra saxatilis Royle ex Florin in Tibet [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(6): 478-486. |
[11] | Mengya Wang, Kuanyou Zhang, Xin Chen, Hao Fu, Shouchun Peng. Study on the mechanism of Rhinoceros Horn and Rehmannia Decoction in the treatment of systemic lupus erythematosus based on the method of network pharmacology [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(5): 351-359. |
[12] | Yonghui Ge, Ling Wang, Su Xu, Tianli Jiang, Jinhua Wang. Direct identification of volatile compounds in the artificially cultivated and wild Chinese medicinal materials (Semiliquidambar cathayesis) by headspace-gas chromatography-ion mobility spectrometry [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(5): 392-405. |
[13] | Ning Ma, Chao Ji. Acetylcholine ameliorates inflammatory microenvironment via regulating the balance of IL-1β/IL-1RA [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(4): 260-267. |
[14] | Wenjing Ta, Ruochen Hua, Xingyue Li, Jihong Song, Wen Lu. In vitro blood-brain barrier models from different species: an overview on permeability associated with drug delivery [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(4): 237-249. |
[15] | Min Ao, Minglan Bao, Yaxing Hou, Ying Yue, Huifang Li, Guohua Wu, Su Ri Ga La Tu. Study on the mechanism of Mongolian medicine Herba Lomatognii against acute liver injury based on network pharmacology [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(4): 268-282. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||