Journal of Chinese Pharmaceutical Sciences ›› 2022, Vol. 31 ›› Issue (6): 452-460.DOI: 10.5246/jcps.2022.06.039
• Original articles • Previous Articles Next Articles
Jianwei Dong*(), Xuejiao Li*(), Chen Yang, Yanqing Zhang, Huifang Zhou, Yali Li
Received:
2022-01-03
Revised:
2022-02-18
Accepted:
2022-03-07
Online:
2022-06-30
Published:
2022-06-30
Contact:
Jianwei Dong, Xuejiao Li
Supporting:
Jianwei Dong, Xuejiao Li, Chen Yang, Yanqing Zhang, Huifang Zhou, Yali Li. The antioxidant activity and total phenolic and total flavonoid contents of Pyracantha fortuneana fruit can be improved by solid-state fermentation with Rhizopus oryzae and Penicillium commune[J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(6): 452-460.
[1] |
Tao, J.Y.; Zheng, G.H.; Zhao, L.; Huang, Z.J.; Zhang, Q.G.; Wu, J.G.; Zhang, X.Y. The antihyperlipidemia activities of six herbs before and after fermentation with white rot fungi. J. Chin. Pharm. Sci. 2009, 18, 136–140.
|
[2] |
Guo, R.; Guo, S.C.; Gao, X.; Wang, H.Y.; Hu, W.H.; Duan, R.; Dong, T.T.X.; Tsim, K.W.K. Fermentation of Danggui Buxue Tang, an ancient Chinese herbal mixture, together with Lactobacillus plantarum enhances the anti-diabetic functions of herbal product. Chin. Med. 2020, 15, 98.
|
[3] |
Zhu, X.J.; Mao, Y.; Guo, M.M.; Yu, H.Y.; Hao, L.L.; Hua, Q.; Lu, Z.; Hong, M.H.; An, F.L. Enhancement of anti-acne effect of Scutellaria baicalensis extract by fermentation with symbiotic fungus Penicillium decumbens. J. Biosci. Bioeng. 2020, 130, 457–463.
|
[4] |
Wang, L.; Wei, W.H.; Tian, X.F.; Shi, K.; Wu, Z.Q. Improving bioactivities of polyphenol extracts from Psidium guajava L. leaves through co-fermentation of Monascus anka GIM 3.592 and Saccharomyces cerevisiae GIM 2.139. Ind. Crops Prod. 2016, 94, 206–215.
|
[5] |
Tu, P.F. Influence of the post-fermentation by four Aspergillus strains on the aroma of pu-erh tea. J. Chin. Pharm. Sci. 2016, 25, 284–290.
|
[6] |
Wen, T.C.; Kang, C.; Meng, Z.B.; Qi, Y.B.; Kang, J.C. Enhanced production of cordycepin by solid state fermentation of cordyceps militaris using additives. Chiang Mai J. Sci. 2016, 43, 972–984.
|
[7] |
Zhao, C.F.; Lei, D.J.; Song, G.H.; Zhang, H.; Xu, H.; Yu, L.J. Characterisation of water-soluble proanthocyanidins of Pyracantha fortuneana fruit and their improvement in cell bioavailable antioxidant activity of quercetin. Food Chem. 2015, 169, 484–491.
|
[8] |
Sun, H.Y.; Wang, X.Y.; Zhou, Z.W.; Wang, R. Extraction optimization of polyphenols from fruits of Pyracantha fortuneana (Maxim.) Li by ultrasonic assistant method and their antibacterial activity. Pak. J. Pharm. Sci. 2019, 32, 1635–1641.
|
[9] |
Dai, Y.; Zhou, G.X.; Kurihara, H.; Ye, W.C.; Yao, X.S. Fortuneanosides G-L, dibenzofuran glycosides from the fruit of pyracantha fortuneana. Chem. Pharm. Bull. 2008, 56, 439–442.
|
[10] |
Dai, Y.; Zhou, G.X.; Kurihara, H.; Ye, W.C.; Yao, X.S. Biphenyl glycosides from the fruit of pyracantha fortuneana. J. Nat. Prod. 2006, 69, 1022–1024.
|
[11] |
Dai, Y.; Zhou, G.X.; Kurihara, H.; Ye, W.C.; Yao, X.S. A biphenyl glycoside from pyracantha fortuneana. Nat. Prod. Res. 2009, 23, 1163–1167.
|
[12] |
Dai, Y.; He, X.J.; Zhou, G.X.; Kurihara, H.; Ye, W.C.; Yao, X.S.;. Acylphloroglucinol glycosides from the fruits of pyracantha fortuneana. J. Asian Nat. Prod. Res. 2008, 10, 111–117.
|
[13] |
Li, H.; Fang, W.Y.; Wang, Z.; Chen, Y. Physicochemical, biological properties, and flavour profile of Rosa roxburghii Tratt, Pyracantha fortuneana, and Rosa laevigata Michx fruits: a comprehensive review. Food Chem. 2022, 366, 130509.
|
[14] |
Wang, J.X.; Niu, J.F.; You, X.J. Study on Chemical Constituents of Pyracantha fortuneana Fruit. Northwest Pharm. J. 1994, 9, 253–255.
|
[15] |
Yao, Y.L.; Shu, C.; Feng, G.; Wang, Q.; Yan, Y.Y.; Yi, Y.; Wang, H.X.; Zhang, X.F.; Wang, L.M. Polysaccharides from Pyracantha fortuneana and its biological activity. Int. J. Biol. Macromol. 2020, 150, 1162–1174.
|
[16] |
Yuan, C.F.; Wang, C.D.; Bu, Y.Q.; Xiang, T.X.; Huang, X.N.; Wang, Z.W.; Yi, F.P.; Ren, G.S.; Liu, G.L.; Song, F.Z. Antioxidative and immunoprotective effects of Pyracantha fortuneana (Maxim.) Li polysaccharides in mice. Immunol. Lett. 2010, 133, 14–18.
|
[17] |
Peng, F.; Guo, X.; Li, Z.H.; Li, C.Z.; Wang, C.D.; Lv, W.R.; Wang, J.J.; Xiao, F.X.; Kamal, M.; Yuan, C.F. Antimutagenic effects of selenium-enriched polysaccharides from pyracantha fortuneana through suppression of cytochrome P450 1A subfamily in the mouse liver. Molecules. 2016, 21, 1731.
|
[18] |
Wang, H.; Ye, Y.H.; Wang, H.H.; Liu, J.; Liu, Y.J.; Jiang, B.W. HPLC-QTOF-MS/MS profiling, antioxidant, and α-glucosidase inhibitory activities of Pyracantha fortuneana fruit extracts. J. Food Biochem. 2019, 43, e12821.
|
[19] |
Wei, M.K.; Chai, W.M.; Yang, Q.; Wang, R.; Peng, Y.Y. Novel insights into the inhibitory effect and mechanism of proanthocyanidins from pyracantha fortuneana fruit on α-glucosidase. J. Food Sci. 2017, 82, 2260–2268.
|
[20] |
Yuan, C.F.; Wang, C.D.; Wang, J.J.; Kumar, V.; Anwar, F.; Xiao, F.X.; Mushtaq, G.; Liu, Y.F.; Kamal, M.A.; Yuan, D. Inhibition on the growth of human MDA-MB-231 breast cancer cells in vitro and tumor growth in a mouse xenograft model by Se-containing polysaccharides from Pyracantha fortuneana. Nutr. Res. 2016, 36, 1243–1254.
|
[21] |
Dong, J.W.; Cai, L.; Xiong, J.; Chen, X.H.; Wang, W.Y.; Shen, N.; Liu, B.L.; Ding, Z.T. Improving the antioxidant and antibacterial activities of fermented bletilla striata with fusarium avenaceum and fusarium oxysporum. Process. Biochem. 2015, 50, 8–13.
|
[22] |
Dong, J.W.; Cai, L.; Li, X.J.; Mei, R.F.; Luo, P.; Ding, Z.T. Improving antioxidant activity of ophioglossum thermale kom. by fermentation with talaromyces purpurogenus M18-11. J. Braz. Chem. Soc. 2018, 29, 1927–1933.
|
[23] |
Dong, J.W.; Li, X.J.; Liu, P.H.; Wu, Y.P.; Yang, C.; Li, Y.F.; Zhang, Y.Q. Improving the antioxidant and anti-tyrosinase activities of Stemonae Radix by solid-state fermentation with Mucor circinelloides T2-12. Prep. Biochem. Biotechnol. 2020, 50, 682–688.
|
[24] |
Dong, J.W.; Li, X.J.; Zhao, H.Y.; Liu, K.Q.; Shi, J.Y.; Li, Y.F.; Yang, C.; He, Y.G. Improving the acetylcholinesterase inhibitory effect of Illigera aromatica by fermentation with Clonostachys rogersoniana. J. Biosci. Bioeng. 2019, 128, 525–528.
|
[25] |
Tai, Z.G.; Cai, L.; Dai, L.; Dong, L.H.; Wang, M.F.; Yang, Y.B.; Cao, Q.E.; Ding, Z.T. Antioxidant activity and chemical constituents of edible flower of Sophora viciifolia. Food Chem. 2011, 126, 1648–1654.
|
[26] |
Frei, B. Cardiovascular disease and nutrient antioxidants: role of low-density lipoprotein oxidation. Crit. Rev. Food Sci. Nutr. 1995, 35, 83–98.
|
[27] |
Stadtman, E.R. Protein oxidation and aging. Science. 1992, 257, 1220–1224.
|
[28] |
Cardenia, V.; Rodriguez-Estrada, M.T.; Boselli, E.; Lercker, G. Cholesterol photosensitized oxidation in food and biological systems. Biochimie. 2013, 95, 473–481.
|
[29] |
Dorman, H.J.D.; Peltoketo, A.; Hiltunen, R.; Tikkanen, M.J. Characterisation of the antioxidant properties of de-odourised aqueous extracts from selected Lamiaceae herbs. Food Chem. 2003, 83, 255–262.
|
[30] |
Li, P.X.; Mao, G.H.; Zhao, T.; Zou, Y.; Ren, Y.N.; Bai, S.Q.; Wu, X.Y.; Yang, L.Q. Extraction and antioxidant activity of red pigments from pyracantha fortuneana. Food Sci. 2013, 34, 116–119.
|
[31] |
Zhao, Y.Y. Natural Medicinal Chemistry. Beijing: Peking University Medical Press. 2012.
|
[1] | Wentao Zhu, Wanglong Hong, Miaomiao Zheng, Guoqiang Ma, Aizong Shen. Combination of pembrolizumab and chemotherapy as first-line treatment in advanced triple-negative breast cancer: a cost-effectiveness analysis [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(7): 587-597. |
[2] | Ciyan Peng, Jing Chen, Sini Li, Jianhe Li, Liubao Peng. Evidence-based pharmacoeconomic evaluation of palbociclib in combination with letrozole versus docetaxel in combination with epirubicin in the first-line treatment of advanced breast cancer with epirubicin [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(3): 214-222. |
[3] | Ling Yong, Ye Yao, Mengyi Han, Xiaoxue Yan, Qingyu Yao, Yuchen Guo, Junsheng Xue, Guoshu Chen, Tianyan Zhou. QAP21 reduces stemness and mobility of metastatic breast cancer cells involving D1DR activation [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(4): 289-305. |
[4] | Lu Shi, Feng Miao, Guopeng Wang, Wenyan Sun, Yang Liu. A PK/PD model of saxagliptin: to simulate its pharmacokinetics and pharmacodynamics in healthy adults and patients with impaired hepatic function [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(2): 119-132. |
[5] | Mengyi Han, Ling Yong, Yuchen Guo, Xiaoxue Yan, Guoshu Chen, Daming Kong, Tianyan Zhou. A stochastic population pharmacodynamic model of QAP14 in the treatment of lung metastases of 4T1 breast cancer [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(10): 794-805. |
[6] | Eric Wei Chiang Chan, Oi Yoon Michelle Soo, Yong Hui Tan, Siu Kuin Wong, Hung Tuck Chan. Nobiletin and tangeretin (citrus polymethoxyflavones): an overview on their chemistry, pharmacology and cytotoxic activities against breast cancer [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(7): 443-454. |
[7] | Hua Deng, Chao Gao, Dengguo Wei, Sisi Liu. Virtual screening for triple-negative breast cancer cell inhibitors based on telomere G-quadruplex structure [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(6): 383-389. |
[8] | Meng Lei, Xueyuan Wang, Hang Miao, Jia Wang, Sijia Sha, Jiang Zhu, Yongqiang Zhu. Co-delivery of paclitaxel and gemcitabine via folic acid-conjugated polymeric multi-drug nanoparticles (FA-PMDNPs) for the treatment of breast cancer [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(10): 701-710. |
[9] | Liang Yang, Ye Yao, Yaoyao Feng, Wei Lu, Tianyan Zhou. Pharmacodynamic model of dopamine D1 receptor agonists in the treatment of breast cancer lung metastasis [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(1): 45-54. |
[10] | Xueling Wang, Yanqin Liang, Yuan Zhang, Bing He, Wenbing Dai, Hua Zhang, Xueqing Wang, Qiang Zhang. Combination therapy of cRGD-DOX self-assembled nanoparticles and bevacizumab for breast cancer [J]. Journal of Chinese Pharmaceutical Sciences, 2019, 28(9): 627-640. |
[11] | Shunchao Yan, Xin Jiao, Na Li, Yangfan Du, Chengyao Jiang. Apatinib induces apoptosis of breast cancer cells by redistribution of Fas into lipid rafts [J]. Journal of Chinese Pharmaceutical Sciences, 2019, 28(11): 778-785. |
[12] | Yaoyao Feng, Peili Jiao, Xiaoxue Yan, Zixi Xue, Ye Yao, Liang Yang, Daming Kong, Hong Su, Ling Yong, Guoshu Chen, Tianyan Zhou. Compound C17 inhibits the lung metastasis of breast cancer [J]. Journal of Chinese Pharmaceutical Sciences, 2019, 28(10): 716-727. |
[13] | Yingzi Bu, Limin Mu, Lei Liu, Wanliang Lu. Construction of folate-conjugated epirubicin liposomes for enhancing the cellular uptake and the co-localization with nuclei of invasive breast cancer cells [J]. Journal of Chinese Pharmaceutical Sciences, 2018, 27(4): 229-240. |
[14] | Yingjie Hu, Jingying Zhang, Lei Liu, Yan Yan, Limin Mu, Jing Bai, Jiashuan Wu, Wanliang Lu. A novel type of functional epirubicin liposomes modified with DSPE-PEG2000-cyclopamine conjugate for eliminating heterogeneous breast cancer cells [J]. Journal of Chinese Pharmaceutical Sciences, 2017, 26(4): 255-264. |
[15] | Qiuyu Liu, Illju Bae, Linlin Qian, Zenglin Lian. HER-2/EGFR, the major targets for anti-metastasis effect of tetraarsenic oxide on SKBR3 breast cancer cells [J]. Journal of Chinese Pharmaceutical Sciences, 2017, 26(2): 87-94. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||