Journal of Chinese Pharmaceutical Sciences ›› 2021, Vol. 30 ›› Issue (2): 119-132.DOI: 10.5246/jcps.2021.02.010
• Original articles • Previous Articles Next Articles
Lu Shi1,#, Feng Miao1,#, Guopeng Wang2, Wenyan Sun1,*(), Yang Liu3,*()
Received:
2020-11-10
Revised:
2020-11-24
Accepted:
2020-12-08
Online:
2021-02-28
Published:
2021-02-27
Contact:
Wenyan Sun, Yang Liu
About author:
Supporting:
Lu Shi, Feng Miao, Guopeng Wang, Wenyan Sun, Yang Liu. A PK/PD model of saxagliptin: to simulate its pharmacokinetics and pharmacodynamics in healthy adults and patients with impaired hepatic function[J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(2): 119-132.
Table 6. Observed and predicted pharmacokinetic parameters of saxagliptin between different patients with hepatic impairment after oral 10 mg administration.
[1] |
Association, A.D. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014, 37, S81–S90.
|
[2] |
Holst, J.J.; Knop, F.K.; Vilsbøll, T.; Krarup, T.; Madsbad, S. Loss of incretin effect is a specific, important, and early characteristic of type 2 diabetes. Diabetes Care. 2011, 34, S251–S257.
|
[3] |
Drucker, D.J. Enhancing incretin action for the treatment of type 2 diabetes. Diabetes Care. 2003, 26, 2929–2940.
|
[4] |
Verspohl, E.J. Novel therapeutics for type 2 diabetes: incretin hormone mimetics (glucagon-like peptide-1 receptor agonists) and dipeptidyl peptidase-4 inhibitors. Pharmacol. Ther. 2009, 124, 113–138.
|
[5] |
Holz, G.G.; Kang, G.X.; Harbeck, M.; Roe, M.W.; Chepurny, O.G. Cell physiology of cAMP sensor Epac. J. Physiol. 2006, 577, 5–15.
|
[6] |
Drucker, D.J.; Nauck, M.A. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet. 2006, 368, 1696–1705.
|
[7] |
Neumiller, J.J. Differential chemistry (structure), mechanism of action, and pharmacology of GLP-1 receptor agonists and DPP-4 inhibitors. J. Am. Pharm. Assoc. 2009, 49, S16–S29.
|
[8] |
Augeri, D.J.; Robl, J.A.; Betebenner, D.A.; Magnin, D.R.; Khanna, A.; Robertson, J.G.; Wang, A.Y.; Simpkins, L.M.; Taunk, P.; Huang, Q.; Han, S.P.; Abboa-Offei, B.; Cap, M.; Xin, L.; Tao, L.; Tozzo, E.; Welzel, G.E.; Egan, D.M.; Marcinkeviciene, J.; Chang, S.Y.; Biller, S.A.; Kirby, M.S.; Parker, R.A.; Hamann, L.G. Discovery and preclinical profile of Saxagliptin (BMS-477118): a highly potent, long-acting, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J. Med. Chem. 2005, 48, 5025–5037.
|
[9] |
Wang, A.Y.; Dorso, C.; Kopcho, L.; Locke, G.; Langish, R.; Harstad, E.; Shipkova, P.; Marcinkeviciene, J.; Hamann, L.; Kirby, M.S. Potency, selectivity and prolonged binding of saxagliptin to DPP4: maintenance of DPP4 inhibition by saxagliptin in vitro and ex vivo when compared to a rapidly-dissociating DPP4 inhibitor. BMC Pharmacol. 2012, 12, 1–11.
|
[10] |
Deacon, C.F.; Holst, J.J. Saxagliptin: a new dipeptidyl peptidase-4 inhibitor for the treatment of type 2 diabetes. Adv. Ther. 2009, 26, 488–499.
|
[11] |
Scheen, A.J. Pharmacokinetics of dipeptidylpeptidase-4 inhibitors. Diabetes Obes. Metab. 2010, 12, 648–658.
|
[12] |
Scheen, A.J. A review of gliptins in 2011. Expert opin. Pharmacother. 2012, 13, 81–99.
|
[13] |
Rodighiero, V. Effects of liver disease on pharmacokinetics. Clin. Pharmacokinet. 1999, 37, 399–431.
|
[14] |
Su, H.; Boulton, D.W.; Barros, A.; Wang, L.F.; Cao, K.; Bonacorsi, S.J.; Iyer, R.A.; Humphreys, W.G.; Christopher, L.J. Characterization of the in vitro and in vivo metabolism and disposition and cytochrome P450 inhibition/induction profile of saxagliptin in human. Drug Metab. Dispos.: Biol. Fate Chem. 2012, 40, 1345–1356.
|
[15] |
Boulton, D.; Li, L.; Frevert, E.U.; Tang, A.; Castaneda, L.; Vachharajani, N.N.; Kornhauser, D.M.; Patel, C.G. Influence of renal or hepatic impairment on the pharmacokinetics of saxagliptin. Clin. Pharmacokinet. 2011, 50, 253–265.
|
[16] |
Boulton, D.W.; Kasichayanula, S.; Keung, C.F.A.; Arnold, M.E.; Christopher, L.J.; Xu, X.S.; Lacreta, F. Simultaneous oral therapeutic and intravenous 14C-microdoses to determine the absolute oral bioavailability of saxagliptin and dapagliflozin. Br. J. Clin. Pharmacol. 2013, 75, 763–768.
|
[17] |
Boulton, D.W. Clinical pharmacokinetics and pharmacodynamics of saxagliptin, a dipeptidyl peptidase-4 inhibitor. Clin. Pharmacokinet. 2017, 56, 11–24.
|
[18] |
Upreti, V.V.; Boulton, D.W.; Li, L.; Ching, A.; Su, H.; LaCreta, F.P.; Patel, C.G. Effect of rifampicin on the pharmacokinetics and pharmacodynamics of saxagliptin, a dipeptidyl peptidase-4 inhibitor, in healthy subjects. Br. J. Clin. Pharmacol. 2011, 72, 92–102.
|
[19] |
Li, G.F.; Wang, K.; Chen, R.; Zhao, H.R.; Yang, J.; Zheng, Q.S. Simulation of the pharmacokinetics of bisoprolol in healthy adults and patients with impaired renal function using whole-body physiologically based pharmacokinetic modeling. Acta Pharmacol. Sin. 2012, 33, 1359–1371.
|
[20] |
Li, J.; Guo, H.F.; Liu, C.; Zhong, Z.Y.; Liu, L.; Liu, X.D. Prediction of drug disposition in diabetic patients by means of a physiologically based pharmacokinetic model. Clin. Pharmacokinet. 2015, 54, 179–193.
|
[21] |
Vaidyanathan, J.; Zdrojewski, I. Clinical pharmacology and biopharmaceutics review(s). Cent. Drug Eval. Res. 2008, 1–127.
|
[22] |
Vaidyanathan, J.; Choe, S. Placebo-controlled,ascending multiple-dose study to evaluate the safety, pharmacokinetics and pharmacodynamics of higher doses of saxagliptin (BMS-477118) in healthy subjects. ONGLYZA. 2009, 128–203.
|
[23] |
Jones, H.M.; Parrott, N.; Jorga, K.; Lavé, T. A novel strategy for physiologically based predictions of human pharmacokinetics. Clin. Pharmacokinet. 2006, 45, 511–542.
|
[24] |
Webb, J.A.; Rostami-Hodjegan, A.; Abdul-Manap, R.; Hofmann, U.; Mikus, G.; Kamali, F. Contribution of dihydrocodeine and dihydromorphine to analgesia following dihydrocodeine administration in man: a PK-PD modelling analysis. Br. J. Clin. Pharmacol. 2001, 52, 35–43.
|
[25] |
Patel, C.G.; Li, L.; Girgis, S.; Kornhauser, D.M.; Frevert, E.U.; Boulton, D.W. Two-way pharmacokinetic interaction studies between saxagliptin and cytochrome P450 substrates or inhibitors: simvastatin, diltiazem extended-release, and ketoconazole. Clin. Pharmacol. 2011, 3, 13–25.
|
[26] |
Munir, A.; Azam, S.; Fazal, S.; Bhatti, A.I. Evaluation of the whole body physiologically based pharmacokinetic (WB-PBPK) modeling of drugs. J. Theor. Biol. 2018, 451, 1–9.
|
[27] |
Li, L.; Yang, J.B. Application progress of physiologically-based pharmacokinetic model in clinical development of novel molecular entities. Chin. J. Clin. Pharmacol. 2017, 17, 1728–1732.
|
[28] |
Upton, R.N.; Foster, D.J.R.; Abuhelwa, A.Y. An introduction to physiologically-based pharmacokinetic models. Paediatr. Anaesth. 2016, 26, 1036–1046.
|
[29] |
Rowland, M.; Balant, L.; Peck, C. Physiologically based pharmacokinetics in Drug Development and Regulatory Science: a workshop report (Georgetown University, Washington, DC, May 29-30, 2002). AAPS PharmSci. 2004, 6, 56–67.
|
[30] |
Peters, S.A. Identification of intestinal loss of a drug through physiologically based pharmacokinetic simulation of plasma concentration-time profiles. Clin. Pharmacokinet. 2008, 47, 245–259.
|
[31] |
Parrott, N.; Lave, T. Applications of physiologically based absorption models in drug discovery and development. Mol. Pharm. 2008, 5, 760–775.
|
[32] |
Gu, W.J. Role of different dipeptidypeptidase-4 inhibitors in specific populations with type 2 diabetes. Drugs Clin. 2015, 23, 20–23.
|
[33] |
Lu, J.M. The clinical research progress of saxagliptin. Chin. J. Diabetes. 2012, 4, 316–320.
|
[1] | Li Yao, Fangfang Fan, Lan Hu, Shengjun Zhao, Lili Zheng. Efficacy and safety of saxagliptin in patients with type 2 diabetes mellitus: a meta-analysis of randomized controlled trials [J]. Journal of Chinese Pharmaceutical Sciences, 2016, 25(2): 128-139. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||