[1] Chen, W.Q.; Zheng, R.S.; Baade, P.D.; Zhang, S.W.; Zeng, H.M.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA Cancer J. Clin. 2016, 66, 115-132.
[2] Dissanayake, S.; Denny, W.A.; Gamage, S.; Sarojini, V. Recent developments in anticancer drug delivery using cell penetrating and tumor targeting peptides. J. Control. Release. 2017, 250, 62-76.
[3] Shi, J.J.; Votruba, A.R.; Farokhzad, O.C.; Langer, R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett. 2010, 10, 3223-3230.
[4] Allen, M.; Louise Jones, J. Jekyll and Hyde: the role of the microenvironment on the progression of cancer. J. Pathol. 2011, 223, 162-176.
[5] Chen, B.L.; Dai, W.B.; He, B.; Zhang, H.; Wang, X.Q.; Wang, Y.G.; Zhang, Q. Current multistage drug delivery systems based on the tumor microenvironment. Theranostics. 2017, 7, 538-558.
[6] Zardavas, D.; Baselga, J.; Piccart, M. Emerging targeted agents in metastatic breast cancer. Nat. Rev. Clin. Oncol. 2013, 10, 191-210.
[7] Barker, H.E.; Paget, J.T.; Khan, A.A.; Harrington, K.J. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat. Rev. Cancer. 2015, 15, 409-425.
[8] Hanahan, D.; Coussens, L.M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012, 21, 309-322.
[9] Giancotti, F.G.; Ruoslahti, E. Integrin signaling. Science. 1999, 285, 1028-1032.
[10] Desgrosellier, J.S.; Cheresh, D.A. Integrins in cancer: biological implications and therapeutic opportunities. Nat. Rev. Cancer. 2010, 10, 9-22.
[11] Dissanayake, S.; Denny, W.A.; Gamage, S.; Sarojini, V. Recent developments in anticancer drug delivery using cell penetrating and tumor targeting peptides. J. Control. Release. 2017, 250, 62-76.
[12] Arosio, D.; Casagrande, C. Advancement in integrin facilitated drug delivery. Adv. Drug Deliv. Rev. 2016, 97, 111-143.
[13] Arap, W. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science. 1998, 279, 377-380.
[14] Dal Corso, A.; Caruso, M.; Belvisi, L.; Arosio, D.; Piarulli, U.; Albanese, C.; Gasparri, F.; Marsiglio, A.; Sola, F.; Troiani, S.; Valsasina, B.; Pignataro, L.; Donati, D.; Gennari, C. Synthesis and biological evaluation of RGD peptidomimetic-paclitaxel conjugates bearing lysosomally cleavable linkers. Chemistry. 2015, 21, 6921-6929.
[15] Dal Pozzo, A.; Ni, M.H.; Esposito, E.; Dallavalle, S.; Musso, L.; Bargiotti, A.; Pisano, C.; Vesci, L.; Bucci, F.; Castorina, M.; Foderà, R.; Giannini, G.; Aulicino, C.; Penco, S. Novel tumor-targeted RGD peptide-camptothecin conjugates: synthesis and biological evaluation. Bioorg. Med. Chem. 2010, 18, 64-72.
[16] Rao, N.; Lee, Y.F.; Ge, R.W. Novel endogenous angiogenesis inhibitors and their therapeutic potential. Acta Pharmacol. Sin. 2015, 36, 1177-1190.
[17] Wang, Z.W.; Dabrosin, C.; Yin, X.; Fuster, M.M.; Arreola, A.; Rathmell, W.K.; Generali, D.; Nagaraju, G.P.; El-Rayes, B.; Ribatti, D.; Chen, Y.C.; Honoki, K.; Fujii, H.; Georgakilas, A.G.; Nowsheen, S.; Amedei, A.; Niccolai, E.; Amin, A.; Ashraf, S.S.; Helferich, B.; Yang, X.J.; Guha, G.; Bhakta, D.; Ciriolo, M.R.; Aquilano, K.; Chen, S.; Halicka, D.; Mohammed, S.I.; Azmi, A.S.; Bilsland, A.; Keith, W.N.; Jensen, L.D. Broad targeting of angiogenesis for cancer prevention and therapy. Semin. Cancer Biol. 2015, 35 Suppl, S224-S243.
[18] Jain, R.K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005, 307, 58-62.
[19] Fukumura, D.; Jain, R.K. Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc. Res. 2007, 74, 72-84.
[20] Ferrara, N.; Kerbel, R.S. Angiogenesis as a therapeutic target. Nature. 2005, 438, 967-974.
[21] Willett, C.G.; Duda, D.G.; di Tomaso, E.; Boucher, Y.; Ancukiewicz, M.; Sahani, D.V.; Lahdenranta, J.; Chung, D.C.; Fischman, A.J.; Lauwers, G.Y.; Shellito, P.; Czito, B.G.; Wong, T.Z.; Paulson, E.; Poleski, M.; Vujaskovic, Z.; Bentley, R.; Chen, H.X.; Clark, J.W.; Jain, R.K. Efficacy, safety, and biomarkers of neoadjuvant bevacizumab, radiation therapy, and fluorouracil in rectal cancer: A multidisciplinary phase II study. J. Clin. Oncol. 2009, 27, 3020-3026.
[22] Jain, R.K. Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J. Clin. Oncol. 2013, 31, 2205-2218.
[23] Fan, Y.C.; Du, W.W.; He, B.; Fu, F.Y.; Yuan, L.; Wu, H.N.; Dai, W.B.; Zhang, H.; Wang, X.Q.; Wang, J.C.; Zhang, X.; Zhang, Q. The reduction of tumor interstitial fluid pressure by liposomal imatinib and its effect on combination therapy with liposomal doxorubicin. Biomaterials. 2013, 34, 2277-2288.
[24] Jain, R.K.; Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 2010, 7, 653-664.
[25] Rakocevic, J.; Orlic, D.; Mitrovic-Ajtic, O.; Tomasevic, M.; Dobric, M.; Zlatic, N.; Milasinovic, D.; Stankovic, G.; Ostojić, M.; Labudovic-Borovic, M. Endothelial cell markers from clinician’s perspective. Exp. Mol. Pathol. 2017, 102, 303-313.
[26] Pathmanathan, N.; Balleine, R.L. Ki67 and proliferation in breast cancer. J. Clin. Pathol. 2013, 66, 512-516. |