Recent evidence of research has been proposed that the phosphoinositide 3-kinase (PI3K) pathway is noticeable target for searching novel anticancer agents. The phosphoinositide 3-kinase (PI3K) is accountable for harmonizing a diverse range of cell functions, such as transcription, proliferation, cell survival, cell growth, degranulation, vesicular trafficking and cell migration, which are mostly involved in carcinogenesis. Particularly, PI3K-mediated signaling molecules and its effects on gene expression contribute to tumorigenesis. PI3Ks generally are grouped into three distinct classes: I, II and III according to their structure and function. The class IA of PI3K includes an alpha, beta or delta p110 catalytic subunit (p110α, p110β, or p110γ), which are associatedwith the activation of RTKs. Mutations in PIK3CA, the gene encoding the p110α catalytic subunit of PI3K, have just been recognizedas novel mechanisms of inducing oncogenic PI3K signaling. Therefore, the class IA PI3K is the only one of most evidently implicated in cancer. The PI3K pathway is mostly mutated in more cancer patients compared with normal person, making it an eye-catching molecular target for analyses based on inhibitor molecule. In this article, we highlighted the signaling effects and regulation pathway of PI3K involved in the development and survival of tumor cells. The consequence and intricacy of PI3K pathway made it an essential beneficial target for cancer treatment.