中国药学(英文版) ›› 2023, Vol. 32 ›› Issue (10): 813-834.DOI: 10.5246/jcps.2023.10.066
李方存1,2,#, 张鼎1,#, 李梓3,#, 侯召猛1,4, 陈炜5, 陈洁2, 胡跃强5,*()
收稿日期:
2023-04-18
修回日期:
2023-05-09
接受日期:
2023-06-11
出版日期:
2023-11-04
发布日期:
2023-11-04
通讯作者:
胡跃强
作者简介:
基金资助:
Fangcun Li1,2,#, Ding Zhang1,#, Zi Li3,#, Zhaomeng Hou1,4, Wei Chen5, Jie Chen2, Yueqiang Hu5,*()
Received:
2023-04-18
Revised:
2023-05-09
Accepted:
2023-06-11
Online:
2023-11-04
Published:
2023-11-04
Contact:
Yueqiang Hu
About author:
摘要:
随着干细胞在阿尔茨海默病的研究越来越多, 这项研究已经成为该领域的研究热点。干细胞疗法是最具前景的一种治疗方法。本研究通过文献计量学可视化分析, 以探索干细胞在阿尔茨海默病的研究热点和趋势。构建干细胞对阿尔茨海默病研究的检索式, 数据来自Web of Science Core Collection database, 使用Cite Space和VOS viewer软件对2002至2021年的文献数据进行分析。干细胞对AD的研究涉及94个国家/地区, 共有3629个机构参与, 每年呈上升趋势, 其中美国和中国是主要的研究国家。Takahashi团队首次培养出诱导多能干细胞, 成为众多研究者理论的来源。University of California System是研究成果影响最大的机构, Plos One是最受欢迎的期刊, Maiese发现SIRT1是AD的治疗靶点, 并且他的研究成果最多。研究重点包括Brain, Dentate gyrus, Amyloid-beta, Oxidative stress, Neurodegeneration, Inflammation, Pluripotent stem cells, Neural stem cells, Microglia。我们的研究揭示了干细胞在AD中的全球研究趋势, 目前研究的热点是诱导多能干细胞模型在AD中的研究, 为该领域的研究工作者提高了重要的信息和参考。
Supporting:
李方存, 张鼎, 李梓, 侯召猛, 陈炜, 陈洁, 胡跃强. 探索干细胞在阿尔茨海默病的研究前景: 2002–2021年文献计量分析[J]. 中国药学(英文版), 2023, 32(10): 813-834.
Fangcun Li, Ding Zhang, Zi Li, Zhaomeng Hou, Wei Chen, Jie Chen, Yueqiang Hu. Exploring the landscape of stem cell research for Alzheimer's disease: A bibliometric analysis spanning 2002–2021[J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(10): 813-834.
[1] |
Kim, H.J.; Cho, K.R.; Jang, H.; Lee, N.K.; Jung, Y.H.; Kim, J.P.; Lee, J.I.; Chang, J.W.; Park, S.; Kim, S.T.; Moon, S.W.; Seo, S.W.; Choi, S.J.; Na, D.L. Intracerebroventricular injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer’s disease dementia: a phase I clinical trial. Alzheimers Res. Ther. 2021, 13, 154.
|
[2] |
Ma, N.; Ji, C. Acetylcholine ameliorates inflammatory microenvironment via regulating the balance of IL-1β/IL-1RA. J. Chin. Pharm. Sci. 2023, 32, 260.
|
[3] |
Qin, C.A.; Li, Y.N.; Wang, K.W. Novel balance mechanism participates in stem cell therapy to alleviate neuropathology and cognitive impairment in animal models with Alzheimer’s disease. Cells. 2021, 10, 2757.
|
[4] |
Madani Neishaboori, A.; Eshraghi, A.; Tasouji Asl, A.; Shariatpanahi, M.; Yousefifard, M.; Gorji, A. Adipose tissue-derived stem cells as a potential candidate in treatment of Alzheimer’s disease: a systematic review on preclinical studies. Pharmacol. Res. Perspect. 2022, 10, e00977.
|
[5] |
Qin, C.; Wang, K.W.; Zhang, L.; Bai, L. Stem cell therapy for Alzheimer’s disease: an overview of experimental models and reality. Anim. Models Exp. Med. 2022, 5, 15–26.
|
[6] |
Vasic, V.; Barth, K.; Schmidt, M.H.H. Neurodegeneration and neuro-regeneration-alzheimer’s disease and stem cell therapy. Int. J. Mol. Sci. 2019, 20, 4272.
|
[7] |
Cone, A.S.; Yuan, X.G.; Sun, L.; Duke, L.C.; Vreones, M.P.; Carrier, A.N.; Kenyon, S.M.; Carver, S.R.; Benthem, S.D.; Stimmell, A.C.; Moseley, S.C.; Hike, D.; Grant, S.C.; Wilber, A.A.; Olcese, J.M.; Meckes, D.G. Mesenchymal stem cell-derived extracellular vesicles ameliorate Alzheimer’s disease-like phenotypes in a preclinical mouse model. Theranostics. 2021, 11, 8129–8142.
|
[8] |
Hu, Y.; Zhang, Y.T. In vitro studies on the multi-target anti-Alzheimer activities of berberine-like alkaloids from Coptidis Rhizoma. J. Chin. Pharm. Sci. 2014, 23, 385–392.
|
[9] |
Arranz, A.M.; De Strooper, B. The role of astroglia in Alzheimer’s disease: pathophysiology and clinical implications. Lancet Neurol. 2019, 18, 406–414.
|
[10] |
Carter, S.F.; Herholz, K.; Rosa-Neto, P.; Pellerin, L.; Nordberg, A.; Zimmer, E.R. Astrocyte biomarkers in Alzheimer’s disease. Trends Mol. Med. 2019, 25, 77–95.
|
[11] |
Najm, R.; Jones, E.A.; Huang, Y.D. Apolipoprotein E4, inhibitory network dysfunction, and Alzheimer’s disease. Mol. Neurodegener. 2019, 14, 1–13.
|
[12] |
Marcum, Z.A.; Keene, C.D.; Larson, E.B. Leveraging neuropathological data in pharmacoepidemiology: a promising approach for dementia prevention? Pharmacoepidemiol. Drug Saf. 2021, 30, 1–3.
|
[13] |
Leng, Z.K.; Zhu, R.J.; Hou, W.; Feng, Y.M.; Yang, Y.L.; Han, Q.; Shan, G.L.; Meng, F.Y.; Du, D.S.; Wang, S.H.; Fan, J.F.; Wang, W.J.; Deng, L.C.; Shi, H.B.; Li, H.J.; Hu, Z.J.; Zhang, F.C.; Gao, J.M.; Liu, H.J.; Li, X.X.; Zhao, Y.Y.; Yin, K.; He, X.J.; Gao, Z.C.; Wang, Y.B.; Yang, B.; Jin, R.H.; Stambler, I.; Lim, L.W.; Su, H.X.; Moskalev, A.; Cano, A.; Chakrabarti, S.; Min, K.J.; Ellison-Hughes, G.; Caruso, C.; Jin, K.L.; Zhao, R.C. Transplantation of ACE2- mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis. 2020, 11, 216.
|
[14] |
Upadhaya, P.G.; Pulakkat, S.; Patravale, V.B. Nose-to-brain delivery: exploring newer domains for glioblastoma multiforme management. Drug Deliv. Transl. Res. 2020, 10, 1044–1056.
|
[15] |
Rodriguez-Outeiriño, L.; Hernandez-Torres, F.; Ramirez de Acuña, F.; Rastrojo, A.; Creus, C.; Carvajal, A.; Salmeron, L.; Montolio, M.; Soblechero-Martin, P.; Arechavala-Gomeza, V.; Franco, D.; Aranega, A.E. miR-106b is a novel target to promote muscle regeneration and restore satellite stem cell function in injured Duchenne dystrophic muscle. Mol. Ther. Nucleic Acids. 2022, 29, 769–786.
|
[16] |
Zakrzewski, W.; Dobrzyński, M.; Szymonowicz, M.; Rybak, Z. Stem cells: past, present, and future. Stem Cell Res. Ther. 2019, 10, 1–22.
|
[17] |
Liu, X.Y.; Yang, L.P.; Zhao, L. Stem cell therapy for Alzheimer’s disease. World J. Stem Cells. 2020, 12, 787–802.
|
[18] |
Rai, G. New insights on stem cells modeling and treatment of human diseases. Front. Biosci. 2020, 25, 1568–1599.
|
[19] |
Pacheco-Herrero, M.; Soto-Rojas, L.O.; Reyes-Sabater, H.; Garcés-Ramirez, L.; de la Cruz López, F.; Villanueva-Fierro, I.; Luna-Muñoz, J. Current status and challenges of stem cell treatment for Alzheimer’s disease. J. Alzheimer’s Dis. 2021, 84, 917–935.
|
[20] |
Hayashi, Y.; Lin, H.T.; Lee, C.C.; Tsai, K.J. Effects of neural stem cell transplantation in Alzheimer’s disease models. J. Biomed. Sci. 2020, 27, 1–11.
|
[21] |
Si, Z.Z.; Wang, X.D. Stem cell therapies in Alzheimer’s disease: applications for disease modeling. J. Pharmacol. Exp. Ther. 2021, 377, 207–217.
|
[22] |
Ma, D.; Guan, B.; Song, L.; Liu, Q.; Fan, Y.; Zhao, L.; Wang, T.; Zhang, Z.; Gao, Z.; Li, S.; Xu, H. A Bibliometric Analysis of Exosomes in Cardiovascular Diseases From 2001 to 2021. Front. Cardiovasc. Med. 2021, 8, 734514.
|
[23] |
Wang, S.; Zhou, H.P.; Zheng, L.; Zhu, W.L.; Zhu, L.N.; Feng, D.; Wei, J.; Chen, G.N.; Jin, X.H.; Yang, H.; Shi, X.; Lv, X. Global trends in research of macrophages associated with acute lung injury over past 10 years: a bibliometric analysis. Front. Immunol. 2021, 12, 669539.
|
[24] |
Ding, Z.B.; Jiang, N.; Yang, T.; Han, H.X.; Hou, M.M.; Kumar, G.; Wu, Y.G.; Song, L.J.; Li, X.Y.; Ma, C.G.; Su, Y.B. Mapping the research trends of astrocytes in stroke: a bibliometric analysis. Front. Cell Neurosci. 2022, 16, 949521.
|
[25] |
Miao, L.; Zhang, J.; Zhang, Z.; Wang, S.; Tang, F.; Teng, M.; Li, Y. A Bibliometric and Knowledge-Map Analysis of CAR-T Cells From 2009 to 2021. Front. Immunol. 2022, 13, 840956.
|
[26] |
Chen, B.; Fu, Y.; Song, G.; Zhong, W.; Guo, J. Research Trends and Hotspots of Exercise for Alzheimer’s Disease: A Bibliometric Analysis. Front. Aging Neurosci. 2022, 14, 984705.
|
[27] |
Zhang, Y.; Li, A.; Xiao, S.Z.; Zhong, N.Y.; Tong, W.L.; Wang, S.W.; Liu, J.M.; Liu, Z.L. A bibliometric analysis of publications on spinal cord injury treatment with glucocorticoids using VOSviewer. Front. Public Health. 2022, 10, 907372.
|
[28] |
Fan, J.C.; Gao, Y.; Zhao, N.; Dai, R.J.; Zhang, H.L.; Feng, X.Y.; Shi, G.X.; Tian, J.H.; Chen, C.; Hambly, B.D.; Bao, S.S. Bibliometric analysis on COVID-19: a comparison of research between English and Chinese studies. Front. Public Health. 2020, 8, 477.
|
[29] |
Ke, L.X.; Lu, C.C.; Shen, R.; Lu, T.T.; Ma, B.; Hua, Y.P. Knowledge mapping of drug-induced liver injury: a scientometric investigation (2010-2019). Front. Pharmacol. 2020, 11, 842.
|
[30] |
Ma, C.Q.; Su, H.; Li, H.J. Global research trends on prostate diseases and erectile dysfunction: a bibliometric and visualized study. Front. Oncol. 2020, 10, 627891.
|
[31] |
Pournader, M.; Kach, A.; Talluri, S. A review of the existing and emerging topics in the supply chain risk management literature. Decis. Sci. 2020, 51, 867–919.
|
[32] |
Gao, Y.; Fan, K.Y.; Lai, Z.N.; Wang, C.; Li, H.Y.; Liu, Q.F. A comprehensive review of the circulation of microplastics in aquatic ecosystem using scientometric method. Environ. Sci. Pollut. Res. 2022, 29, 30935–30953.
|
[33] |
Yeung, A.W.K.; Heinrich, M.; Kijjoa, A.; Tzvetkov, N.T.; Atanasov, A.G. The ethnopharmacological literature: an analysis of the scientific landscape. J. Ethnopharmacol. 2020, 250, 112414.
|
[34] |
Vittori, A.; Cascella, M.; Leonardi, M.; Monaco, F.; Nocerino, D.; Cuomo, A.; Ottaiano, A.; Perri, F.; Mascilini, I.; Francia, E.; Petrucci, E.; Marinangeli, F.; Picardo, S.G. VOSviewer-based bibliometric network analysis for evaluating research on juvenile primary fibromyalgia syndrome (JPFS). Children. 2022, 9, 637.
|
[35] |
Wang, C.Y.; Jing, H.W.; Sun, Z.Y.; Yao, J.X.; Zhang, X.Y.; Liu, T.; Wu, Y. A bibliometric analysis of primary aldosteronism research from 2000 to 2020. Front. Endocrinol. 2021, 12, 665912.
|
[36] |
Jin, K.L.; Peel, A.L.; Mao, X.O.; Xie, L.; Cottrell, B.A.; Henshall, D.C.; Greenberg, D.A. Increased hippocampal neurogenesis in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA. 2004, 101, 343–347.
|
[37] |
Ozturk, T.; Talo, M.; Yildirim, E.A.; Baloglu, U.B.; Yildirim, O.; Rajendra Acharya, U. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput. Biol. Med. 2020, 121, 103792.
|
[38] |
Tu, Y.F.; Chien, C.S.; Yarmishyn, A.A.; Lin, Y.Y.; Luo, Y.H.; Lin, Y.T.; Lai, W.Y.; Yang, D.M.; Chou, S.J.; Yang, Y.P.; Wang, M.L.; Chiou, S.H. A review of SARS-CoV-2 and the ongoing clinical trials. Int. J. Mol. Sci. 2020, 21, 2657.
|
[39] |
Maiese, K. Sirtuins: developing innovative treatments for aged-related memory loss and Alzheimer’s disease. Curr. Neurovasc. Res. 2018, 15, 367–371.
|
[40] |
Maiese, K. Neurodegeneration, memory loss, and dementia: the impact of biological clocks and circadian rhythm. Front. Biosci. (Landmark Ed). 2021, 26, 614–627.
|
[41] |
Maiese, K. Nicotinamide as a foundation for treating neurodegenerative disease and metabolic disorders. Curr. Neurovascular Res. 2021, 18, 134–149.
|
[42] |
Zhao, C.M.; Deng, W.; Gage, F.H. Mechanisms and functional implications of adult neurogenesis. Cell. 2008, 132, 645–660.
|
[43] |
Glass, C.K.; Saijo, K.; Winner, B.; Marchetto, M.C.; Gage, F.H. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010, 140, 918–934.
|
[44] |
Mu, Y.L.; Gage, F.H. Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol. Neurodegener. 2011, 6, 85.
|
[45] |
Mertens, J.; Herdy, J.R.; Traxler, L.; Schafer, S.T.; Schlachetzki, J.C.M.; Böhnke, L.; Reid, D.A.; Lee, H.; Zangwill, D.; Fernandes, D.P.; Agarwal, R.K.; Lucciola, R.; Zhou-Yang, L.; Karbacher, L.; Edenhofer, F.; Stern, S.; Horvath, S.; Paquola, A.C.M.; Glass, C.K.; Yuan, S.H.; Gage, F.H. Age-dependent instability of mature neuronal fate in induced neurons from Alzheimer’s patients. Cell Stem Cell. 2021, 28, 1533–1548.e6.
|
[46] |
Lazzari, C.; McAleer, S.; Rabottini, M. The assessment of interprofessional practice in mental health nursing with ethnographic observation and social network analysis: a confirmatory and bibliometric network study using VOSviewer. Riv Psichiatr. 2022, 57, 115–122.
|
[47] |
Liu, S.J.; Gao, Q.H.; Deng, Y.J.; Zen, Y.; Zhao, M.; Guo, J. Knowledge domain and emerging trends in chronic prostatitis/chronic pelvic pain syndrome from 1970 to 2020: a scientometric analysis based on VOSviewer and CiteSpace. Ann. Palliat. Med. 2022, 11, 1714–1724.
|
[48] |
Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002, 297, 353–356.
|
[49] |
Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006, 126, 663–676.
|
[50] |
Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007, 131, 861–872.
|
[51] |
Lancaster, M.A.; Renner, M.; Martin, C.A.; Wenzel, D.; Bicknell, L.S.; Hurles, M.E.; Homfray, T.; Penninger, J.M.; Jackson, A.P.; Knoblich, J.A. Cerebral organoids model human brain development and microcephaly. Nature. 2013, 501, 373–379.
|
[52] |
Blurton-Jones, M.; Kitazawa, M.; Martinez-Coria, H.; Castello, N.A.; Müller, F.J.; Loring, J.F.; Yamasaki, T.R.; Poon, W.W.; Green, K.N.; LaFerla, F.M. Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc. Natl. Acad. Sci. USA. 2009, 106, 13594–13599.
|
[53] |
Yagi, T.; Ito, D.; Okada, Y.; Akamatsu, W.; Nihei, Y.; Yoshizaki, T.; Yamanaka, S.; Okano, H.; Suzuki, N. Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum. Mol. Genet. 2011, 20, 4530–4539.
|
[54] |
Israel, M.A.; Yuan, S.H.; Bardy, C.; Reyna, S.M.; Mu, Y.L.; Herrera, C.; Hefferan, M.P.; Van Gorp, S.; Nazor, K.L.; Boscolo, F.S.; Carson, C.T.; Laurent, L.C.; Marsala, M.; Gage, F.H.; Remes, A.M.; Koo, E.H.; Goldstein, L.S.B. Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature. 2012, 482, 216–220.
|
[55] |
Choi, S.H.; Kim, Y.H.; Hebisch, M.; Sliwinski, C.; Lee, S.; D'Avanzo, C.; Chen, H.C.; Hooli, B.; Asselin, C.; Muffat, J.; Klee, J.B.; Zhang, C.; Wainger, B.J.; Peitz, M.; Kovacs, D.M.; Woolf, C.J.; Wagner, S.L.; Tanzi, R.E.; Kim, D.Y. A three-dimensional human neural cell culture model of Alzheimer’s disease. Nature. 2014, 515, 274–278.
|
[56] |
Ejaz, H.; Zeeshan, H.M.; Ahmad, F.; Bukhari, S.N.A.; Anwar, N.; Alanazi, A.; Sadiq, A.; Junaid, K.; Atif, M.; Abosalif, K.O.A.; Iqbal, A.; Hamza, M.A.; Younas, S. Bibliometric analysis of publications on the omicron variant from 2020 to 2022 in the scopus database using R and VOSviewer. Int. J. Environ. Res. Public Health. 2022, 19, 12407.
|
[57] |
Song, L.X.; Zhang, J.; Ma, D.; Fan, Y.X.; Lai, R.M.; Tian, W.D.; Zhang, Z.H.; Ju, J.Q.; Xu, H. A bibliometric and knowledge-map analysis of macrophage polarization in atherosclerosis from 2001 to 2021. Front. Immunol. 2022, 13, 910444.
|
[58] |
Wei, N.M.; Hu, Y.H.; Liu, G.X.; Li, S.Y.; Yuan, G.Z.; Shou, X.T.; Zhang, X.S.; Shi, J.J.; Zhai, H.Q. A bibliometric analysis of familial hypercholesterolemia from 2011 to 2021. Curr. Probl. Cardiol. 2023, 48, 101151.
|
[59] |
Li, X.P.; Wei, W.; Wang, Y.; Wang, Q.; Liu, Z.B. Global trend in the research and development of acupuncture treatment on Parkinson’s disease from 2000 to 2021: a bibliometric analysis. Front. Neurol. 2022, 13, 906317.
|
[60] |
Shao, B.; Qin, Y.F.; Ren, S.H.; Peng, Q.F.; Qin, H.; Wang, Z.B.; Wang, H.D.; Li, G.M.; Zhu, Y.L.; Sun, C.L.; Zhang, J.Y.; Li, X.; Wang, H. Structural and temporal dynamics of mesenchymal stem cells in liver diseases from 2001 to 2021: a bibliometric analysis. Front. Immunol. 2022, 13, 859972.
|
[61] |
Raja, W.K.; Mungenast, A.E.; Lin, Y.T.; Ko, T.; Abdurrob, F.; Seo, J.; Tsai, L.H. Self-organizing 3D human neural tissue derived from induced pluripotent stem cells recapitulate Alzheimer’s disease phenotypes. PLoS One. 2016, 11, e0161969.
|
[62] |
Keren-Shaul, H.; Spinrad, A.; Weiner, A.; Matcovitch-Natan, O.; Dvir-Szternfeld, R.; Ulland, T.K.; David, E.; Baruch, K.; Lara-Astaiso, D.; Toth, B.; Itzkovitz, S.; Colonna, M.; Schwartz, M.; Amit, I. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell. 2017, 169, 1276–1290.e17.
|
[63] |
Heneka, M.T.; Carson, M.J.; El Khoury, J.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; Herrup, K.; Frautschy, S.A.; Finsen, B.; Brown, G.C.; Verkhratsky, A.; Yamanaka, K.; Koistinaho, J.; Latz, E.; Halle, A.; Petzold, G.C.; Town, T.; Morgan, D.; Shinohara, M.L.; Perry, V.H.; Holmes, C.; Bazan, N.G.; Brooks, D.J.; Hunot, S.; Joseph, B.; Deigendesch, N.; Garaschuk, O.; Boddeke, E.; Dinarello, C.A.; Breitner, J.C.; Cole, G.M.; Golenbock, D.T.; Kummer, M.P. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015, 14, 388–405.
|
[64] |
Selkoe, D.J.; Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25years. EMBO Mol. Med. 2016, 8, 595–608.
|
[65] |
Muffat, J.; Li, Y.; Yuan, B.B.; Mitalipova, M.; Omer, A.; Corcoran, S.; Bakiasi, G.; Tsai, L.H.; Aubourg, P.; Ransohoff, R.M.; Jaenisch, R. Efficient derivation of microglia-like cells from human pluripotent stem cells. Nat. Med. 2016, 22, 1358–1367.
|
[66] |
Muratore, C.R.; Rice, H.C.; Srikanth, P.; Callahan, D.G.; Shin, T.; Benjamin, L.N.P.; Walsh, D.M.; Selkoe, D.J.; Young-Pearse, T.L. The familial Alzheimer’s disease APPV717I mutation alters APP processing and Tau expression in iPSC-derived neurons. Hum. Mol. Genet. 2014, 23, 3523–3536.
|
[67] |
Qian, X.Y.; Nguyen, H.N.; Song, M.M.; Hadiono, C.; Ogden, S.C.; Hammack, C.; Yao, B.; Hamersky, G.R.; Jacob, F.; Zhong, C.; Yoon, K.J.; Jeang, W.; Lin, L.; Li, Y.J.; Thakor, J.; Berg, D.A.; Zhang, C.; Kang, E.; Chickering, M.; Nauen, D.; Ming, G.L. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell. 2016, 165, 1238–1254.
|
[68] |
Kim, H.J.; Seo, S.W.; Chang, J.W.; Lee, J.I.; Kim, C.H.; Chin, J.; Choi, S.J.; Kwon, H.; Yun, H.J.; Lee, J.M.; Kim, S.T.; Choe, Y.S.; Lee, K.H.; Na, D.L. Stereotactic brain injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer’s disease dementia: a phase 1 clinical trial. Alzheimer’s Dement. 2015, 1, 95–102.
|
[69] |
Shin, E. Clinical trials of stem cell therapy in Japan: the decade of progress under the national program. J. Clin. Med. 2022, 11, 7030.
|
[70] |
Xie, X.K.; Chen, J.; Shu, Z.Y. From strict moral standards to ethical neutrality: a policy-guided shift in the patentability of human embryonic stem cells in China. Stem Cell Res. Ther. 2020, 11, 1–8.
|
[71] |
Allum, N.; Allansdottir, A.; Gaskell, G.; Hampel, J.; Jackson, J.; Moldovan, A.; Priest, S.; Stares, S.; Stoneman, P. Religion and the public ethics of stem-cell research: attitudes in Europe, Canada and the United States. PLoS One. 2017, 12, e0176274.
|
[72] |
Ullah, M.; Liu, D.D.; Thakor, A.S. Mesenchymal stromal cell homing: mechanisms and strategies for improvement. iScience. 2019, 15, 421–438.
|
[1] | 马宁, 纪超. 乙酰胆碱通过调节IL-1β/IL-1RA平衡改善炎症微环境的机制探讨[J]. 中国药学(英文版), 2023, 32(4): 260-267. |
[2] | 薛钧升, 王思媛, 郝方然, 田秀云, 苏红, 杨亮, 安启明, 郝纯毅, 周田彦. 多巴胺增强舒尼替尼治疗胰腺癌的药效[J]. 中国药学(英文版), 2020, 29(10): 689-700. |
[3] | 冯瑶瑶, 焦佩丽, 严晓雪, 薛子溪, 姚烨, 杨亮, 孔大明, 苏红, 雍灵, 陈国术, 周田彦. 化合物C17抑制乳腺癌肺转移[J]. 中国药学(英文版), 2019, 28(10): 716-727. |
[4] | 余家沛, 牛彦, 孙琦, 许凤荣, 梁磊, 王超, 徐萍. 2-氨基苯并咪唑类BACE1抑制剂的设计和合成[J]. 中国药学(英文版), 2017, 26(9): 650-659. |
[5] | 冀莎莎, 雷芸, 黄霄天, 高志芹. β-二氢沉香呋喃倍半萜抗Aβ25-35诱导的神经细胞凋亡和氧化损伤的保护作用[J]. 中国药学(英文版), 2016, 25(8): 582-589. |
[6] | 赵欣, 张世平, 安春娜, 张宏宁, 孙懿, 李艳梅, 蒲小平. 岩藻黄素对β-淀粉样蛋白致细胞损伤的神经保护作用[J]. 中国药学(英文版), 2015, 24(7): 467-474. |
[7] | 王景达, 何冰, 代文兵, 王学清, 王坚成, 张烜, 张强. TR短肽修饰的DSPE-PEG胶束对CD133高表达胶质瘤肿瘤干细胞体外靶向性评价[J]. 中国药学(英文版), 2015, 24(1): 34-39. |
[8] | 胡莹, 杨雁芳, 杨文志, 张英涛. 中药黄连中小檗碱类主要成分抗阿尔茨海默病的多靶点体外活性研究[J]. 中国药学(英文版), 2014, 23(6): 385-392. |
[9] | 陈萍, 王培培, 邵国华, 向兰*. 48种中药材的乙酰胆碱酯酶抑制活性研究[J]. , 2013, 22(1): 106-109. |
[10] | 张杨, 王学清, 王坚成, 张烜, 张强*. 盐霉素和盐霉素钠对人乳腺癌干细胞和乳腺癌细胞体外细胞毒作用的比较[J]. , 2011, 20(4): 368-375. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||