中国药学(英文版) ›› 2023, Vol. 32 ›› Issue (3): 165-179.DOI: 10.5246/jcps.2023.03.014
• 【研究论文】 • 下一篇
高美琪1, 吴佳丽1, 朱文静1, 张晓彤1, 樊文玲1,2,*()
收稿日期:
2022-10-09
修回日期:
2022-11-16
接受日期:
2022-12-10
出版日期:
2023-03-31
发布日期:
2023-03-30
通讯作者:
樊文玲
作者简介:
基金资助:
Meiqi Gao1, Jiali Wu1, Wenjing Zhu1, Xiaotong Zhang1, Wenling Fan1,2,*()
Received:
2022-10-09
Revised:
2022-11-16
Accepted:
2022-12-10
Online:
2023-03-31
Published:
2023-03-30
Contact:
Wenling Fan
摘要:
本文旨在制备、表征和评价固体分散体对低溶解度和高熔点的白藜芦醇(RES)的能力。采用热熔挤出法(HME)制备缓释固体分散体(SRSD), 使用疏水-亲水聚合物混合物(Eudragit RS和Poloxamer 188)控制RES的释放。使用单因素试验系统研究了配方和工艺参数对制备工艺的影响。接着, 采用Box-Behnken设计(三因素、三水平)对SRSD的制备工艺进行优化。使用差示扫描量热法和 X-射线衍射来确定固体分散体的物理状态, 使用扫描电子显微镜观察其表面特性, 使用傅里叶红外光谱探寻辅料之间的化学相互作用。通过溶出度试验考察其动力学和释药时间。体外研究表明, 制备出的白藜芦醇固体分散体的释放遵循Weibull模型。最终使用热熔挤出技术成功制备了白藜芦醇缓释固体分散物(RESRS P188-SRSD), 其中药物与载体的质量比为1:3, 释放调节剂为P188, 剂量为10%。该制剂稳定性好, 溶出度提高了10倍。
Supporting:
高美琪, 吴佳丽, 朱文静, 张晓彤, 樊文玲. 利用热熔挤出技术制备和表征白藜芦醇缓释固体分散体[J]. 中国药学(英文版), 2023, 32(3): 165-179.
Meiqi Gao, Jiali Wu, Wenjing Zhu, Xiaotong Zhang, Wenling Fan. The preparation and characterization of sustained-release solid dispersion of resveratrol by hot-melt extrusion technology[J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(3): 165-179.
[1] |
Zhu, Y.Z.; Wu, W.J.; Zhu, Q.; Liu, X.H. Discovery of Leonuri and therapeutical applications: from bench to bedside. Pharmacol. Ther. 2018, 188, 26–35.
|
[2] |
Dong, X.; Zeng, Y.; Liu, Y.; You, L.; Yin, X.; Fu, J.; Ni, J. Aloe-emodin: a review of its pharmacology, toxicity, and pharmacokinetics. Phytother. Res. 2020, 34, 270–281.
|
[3] |
Jardim, F.R.; de Rossi, F.T.; Nascimento, M.X.; da Silva Barros, R.G.; Borges, P.A.; Prescilio, I.C.; de Oliveira, M.R. Resveratrol and brain mitochondria: a review. Mol. Neurobiol. 2018, 55, 2085–2101.
|
[4] |
Xia, N.; Daiber, A.; Förstermann, U.; Li, H. Antioxidant effects of resveratrol in the cardiovascular system. Br. J. Pharmacol. 2017, 174, 1633–1646.
|
[5] |
Li, W.; Quan, P.; Zhang, Y.Q.; Cheng, J.; Liu, J.; Cun, D.M.; Xiang, R.W.; Fang, L. Influence of drug physicochemical properties on absorption of water insoluble drug nanosuspensions. Int. J. Pharm. 2014, 460, 13–23.
|
[6] |
Vasconcelos, T.; Marques, S.; das Neves, J.; Sarmento, B. Amorphous solid dispersions: rational selection of a manufacturing process. Adv. Drug Deliv. Rev. 2016, 100, 85–101.
|
[7] |
Nivelle, L.; Hubert, J.; Courot, E.; Jeandet, P.; Aziz, A.; Nuzillard, J.M.; Renault, J.H.; Clément, C.; Martiny, L.; Delmas, D.; Tarpin, M. Anti-cancer activity of resveratrol and derivatives produced by grapevine cell suspensions in a 14 L stirred bioreactor. Molecules. 2017, 22, 474.
|
[8] |
Wang, W.; Zhang, L.; Chen, T.; Guo, W.; Bao, X.; Wang, D.; Ren, B.; Wang, H.; Li, Y.; Wang, Y.; Chen, S.; Tang, B.; Yang, Q.; Chen, C. Anticancer effects of resveratrol-loaded solid lipid nanoparticles on human breast cancer cells. Molecules. 2017, 22, E1814.
|
[9] |
Tran, P.; Park, J.S. Application of supercritical fluid technology for solid dispersion to enhance solubility and bioavailability of poorly water-soluble drugs. Int. J. Pharm. 2021, 610, 121247.
|
[10] |
Mori, Y.; Motoyama, K.; Ishida, M.; Onodera, R.; Higashi, T.; Arima, H. Theoretical and practical evaluation of lowly hydrolyzed polyvinyl alcohol as a potential carrier for hot-melt extrusion. Int. J. Pharm. 2019, 555, 124–134.
|
[11] |
Chowdhury, N.; Vhora, I.; Patel, K.; Bagde, A.; Kutlehria, S.; Singh, M. Development of hot melt extruded solid dispersion of tamoxifen citrate and resveratrol for synergistic effects on breast cancer cells. AAPS Pharmscitech. 2018, 19, 3287–3297.
|
[12] |
Repka, M.A.; Bandari, S.; Kallakunta, V.R.; Vo, A.Q.; McFall, H.; Pimparade, M.B.; Bhagurkar, A.M. Melt extrusion with poorly soluble drugs – An integrated review. Int. J. Pharm. 2018, 535, 68–85.
|
[13] |
Shah, S.; Maddineni, S.; Lu, J.; Repka, M.A. Melt extrusion with poorly soluble drugs. Int. J. Pharm. 2013, 453, 233–252.
|
[14] |
Palazi, E.; Karavas, E.; Barmpalexis, P.; Kostoglou, M.; Nanaki, S.; Christodoulou, E.; Bikiaris, D.N. Melt extrusion process for adjusting drug release of poorly water soluble drug felodipine using different polymer matrices. Eur. J. Pharm. Sci. 2018, 114, 332–345.
|
[15] |
Lakshman, J.P.; Cao, Y.; Kowalski, J.; Serajuddin, A.T. Application of melt extrusion in the development of a physically and chemically stable high-energy amorphous solid dispersion of a poorly water-soluble drug. Mol. Pharm. 2008, 5, 994–1002.
|
[16] |
Bennett, R.C.; Brough, C.; Miller, D.A.; O’Donnell, K.P.; Keen, J.M.; Hughey, J.R.; Williams, R.O.; McGinity, J.W. Preparation of amorphous solid dispersions by rotary evaporation and KinetiSol Dispersing: approaches to enhance solubility of a poorly water-soluble gum extract. Drug Dev. Ind. Pharm. 2015, 41, 382–397.
|
[17] |
Feng, C.L.; Ding, Y.Y.; Li, W.J.; Yu, J.Y.; Xu, X.M. Preparation of fisetin solid dispersions. Chin. Tradit. Pat. Med. 2017, 39, 2503–2507.
|
[18] |
Zhu, W.; Fan, W.; Zhang, X.; Gao, M. Sustained-release solid dispersion of high-melting-point and insoluble resveratrol prepared through hot melt extrusion to improve its solubility and bioavailability. Mol. Basel Switz. 2021, 26, 4982.
|
[19] |
Salem, A.; Nagy, S.; Pál, S.; Széchenyi, A. Reliability of the Hansen solubility parameters as co-crystal formation prediction tool. Int. J. Pharm. 2019, 558, 319–327.
|
[20] |
Greenhalgh, D.J.; Williams, A.C.; Timmins, P.; York, P. Solubility parameters as predictors of miscibility in solid dispersions. J. Pharm. Sci. 1999, 88, 1182–1190.
|
[21] |
Hansen, C.M. 50 Years with solubility parameters—past and future. Prog. Org. Coat. 2004, 51, 77–84.
|
[22] |
Venkatram, S.; Kim, C.; Chandrasekaran, A.; Ramprasad, R. Critical assessment of the hildebrand and Hansen solubility parameters for polymers. J. Chem. Inf. Modeling. 2019, 59, 4188–4194.
|
[23] |
Kumar, S.; Lather, V.; Pandita, D. Stability indicating simplified HPLC method for simultaneous analysis of resveratrol and quercetin in nanoparticles and human plasma. Food Chem. 2016, 197, 959–964.
|
[24] |
Liu, H.; Du, K.; Li, D.; Du, Y.; Xi, J.; Xu, Y.; Shen, Y.; Jiang, T.; Webster, T.J. A high bioavailability and sustained-release nano-delivery system for nintedanib based on electrospray technology. Int J. Nanomed. 2018, 13, 8379–8393.
|
[25] |
Qiao, J.H.; Guo, J.P.; Ma, Y.; Piao, M.G. Preparation and characterization of atorvastatin calcium poloxamer 188 solid dispersion. China Pharm. 2015, 26, 103–106.
|
[26] |
Liu, S.F. Preparation of endragit RL/RS encapsulated flurbiprofen solid dispersion. J. Pharm. Res. 2014, 33, 155–157, 161.
|
[27] |
Corsaro, C.; Neri, G.; Mezzasalma, A.M.; Fazio, E. Weibull modeling of controlled drug release from Ag-PMA nanosystems. Polymers. 2021, 13, 2897.
|
[28] |
Balata, G.F.; Essa, E.A.; Shamardl, H.A.; Zaidan, S.H.; Abourehab, M.A. Self-emulsifying drug delivery systems as a tool to improve solubility and bioavailability of resveratrol. Drug Des. Dev. Ther. 2016, 10, 117–128.
|
[1] | 蒋柏阳, 邱凌琪, 刘锦荣, 王翰轩, 董甦伟. 白藜芦醇衍生天然产物Polynapstilbenes A和B的合成研究[J]. 中国药学(英文版), 2019, 28(9): 595-604. |
[2] | 尹雅杰, 张小飞, 崔征, 曲伟, 何冰, 代文兵, 张华, 王学清, 张强. 热熔挤出法制备的非诺贝特纳米骨架系统的体外释放和口服生物利用度研究[J]. 中国药学(英文版), 2019, 28(5): 329-338. |
[3] | 庞朝海, 方功, 王定勇. 响应面优化超声辅助提取独子藤中雷公藤红素[J]. 中国药学(英文版), 2017, 26(2): 130-138. |
[4] | 姚倩, 侯世祥, 何希辉, 张瑄, 颜军, 苟小军*. 高效液相色谱法测定小鼠肝脏中反式-白藜芦醇含量 [J]. , 2008, 17(2): 158-162. |
[5] | 张勉*, 王磊, 黄澜, 张紫佳, 王峥涛. 中药虎杖商品药材的定性鉴别与定量分析[J]. , 2004, 13(2): 106-111. |
[6] | 张学景, 朱杰, 熊晓云, 邹永*, 林慧贞. 白藜芦醇及白藜芦醇烟酸酯的合成[J]. , 2004, 13(1): 10-13. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||