[1] |
Gaucher, G.; Satturwar, P.; Jones, M.C.; Furtos, A.; Leroux, J.C. Polymeric micelles for oral drug delivery. Eur. J. Pharm. Biopharm. 2010, 76, 147–158.
|
[2] |
Deng, Y.Q. Preparation and characterization of intestine PepT1-targeted calcium carbonate nanoparticles. J. Chin. Pharm. Sci. 2018, 27, 397–407.
|
[3] |
Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. ChemInform abstract: drug solubility: importance and enhancement techniques. ChemInform. 2013, doi: 10.1002/chin.201326246.
|
[4] |
Kalepu, S.; Nekkanti, V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm. Sin. B. 2015, 5, 442–453
|
[5] |
Reddy, M.S.; Gurram, A.K.; Deshpande, P.B.; Kar, S.S.; Nayak, U.; Udupa, N. Role of components in the formation of self-microemulsifying drug delivery systems. Indian J. Pharm. Sci. 2015, 77, 249.
|
[6] |
Pridgen, E.M.; Alexis, F.; Farokhzad, O.C. Polymeric nanoparticle drug delivery technologies for oral delivery applications. Expert. Opin. Drug Deliv. 2015, 12, 1459–1473.
|
[7] |
Atuma, C.; Strugala, V.; Allen, A.; Holm, L. The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am. J. Physiol. Gastrointest. Liver Physiol. 2001, 280, G922–G929.
|
[8] |
Varma, M.V.S.; Ambler, C.M.; Ullah, M.; Rotter, C.J.; Sun, H.; Litchfield, J.; Fenner, K.S.; El-Kattan, A. Targeting intestinal transporters for optimizing oral drug absorption. Curr. Drug Metab. 2010, 11, 730–742.
|
[9] |
Jin, Y.; Liu, Q.; Zhou, C.H.; Hu, X.P.; Wang, L.Q.; Han, S.D.; Zhou, Y.H.; Liu, Y. Intestinal oligopeptide transporter PepT1-targeted polymeric micelles for further enhancing the oral absorption of water-insoluble agents. Nanoscale. 2019, 11, 21433–21448.
|
[10] |
He, C.Y. Preparation and characterization of intestinal transporter-targeted polymeric micelles. J. Chin. Pharm. Sci. 2018, 27, 490–497.
|
[11] |
Alrefai, W.A.; Gill, R.K. Bile acid transporters: structure, function, regulation and pathophysiological implications. Pharm. Res. 2007, 24, 1803–1823.
|
[12] |
Balakrishnan, A.; Polli, J.E. Apical sodium dependent bile acid transporter (ASBT, SLC10A2): a potential prodrug target. Mol. Pharmaceutics. 2006, 3, 223–230.
|
[13] |
Chiang, J.Y. Bile Acid Metabolism and Signaling. Compr Physiol. 2013, 3, 1191–1212.
|
[14] |
Park, J.W.; Jeon, O.C.; Kim, S.K.; Al-Hilal, T.A.; Jin, S.J.; Moon, H.T.; Yang, V.C.; Kim, S.Y.; Byun, Y. High antiangiogenic and low anticoagulant efficacy of orally active low molecular weight heparin derivatives. J. Control. Release. 2010, 148, 317–326.
|
[15] |
Fan, W.W.; Xia, D.N.; Zhu, Q.L.; Li, X.Y.; He, S.F.; Zhu, C.L.; Guo, S.Y.; Hovgaard, L.; Yang, M.S.; Gan, Y. Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery. Biomaterials. 2018, 151, 13–23.
|
[16] |
Park, J.; Choi, J.U.; Kim, K.; Byun, Y. Bile acid transporter mediated endocytosis of oral bile acid conjugated nanocomplex. Biomaterials. 2017, 147, 145–154.
|
[17] |
Fan, W.W.; Xia, D.N.; Zhu, Q.L.; Hu, L.; Gan, Y. Intracellular transport of nanocarriers across the intestinal epithelium. Drug Discov. Today. 2016, 21, 856–863.
|
[18] |
He, B.; Lin, P.; Jia, Z.R.; Du, W.W.; Qu, W.; Yuan, L.; Dai, W.B.; Zhang, H.; Wang, X.Q.; Wang, J.C.; Zhang, X.; Zhang, Q. The transport mechanisms of polymer nanoparticles in Caco-2 epithelial cells. Biomaterials. 2013, 34, 6082–6098.
|
[19] |
Annaba, F.; Sarwar, Z.; Kumar, P.; Saksena, S.; Turner, J.R.; Dudeja, P.K.; Gill, R.K.; Alrefai, W.A. Modulation of ileal bile acid transporter (ASBT) activity by depletion of plasma membrane cholesterol: association with lipid rafts. Am. J. Physiol. Gastrointest. Liver Physiol. 2008, 294, G489–G497.
|