[1] |
Nam, J.; Son, S.; Park, K.S.; Zou, W.P.; Shea, L.D.; Moon, J.J. Cancer nanomedicine for combination cancer immunotherapy. Nat. Rev. Mater. 2019, 4, 398.
|
[2] |
Chen, Y.C.; Xia, R.; Huang, Y.X.; Zhao, W.C.; Li, J.; Zhang, X.L.; Wang, P.C.; Venkataramanan, R.; Fan, J.; Xie, W.; Ma, X.C.; Lu, B.F.; Li, S. An immunostimulatory dual-functional nanocarrier that improves cancer immunochemotherapy. Nat. Commun. 2016, 7, 13443.
|
[3] |
Haider, M.; Abdin, S.M.; Kamal, L.; Orive, G. Nanostructured lipid carriers for delivery of chemotherapeutics: a review. Pharmaceutics. 2020, 12, 288.
|
[4] |
Vincent, J.; Mignot, G.; Chalmin, F.; Ladoire, S.; Bruchard, M.; Chevriaux, A.; Martin, F.; Apetoh, L.; Rebe, C.; Ghiringhelli, F. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res. 2010, 70, 3052–3061.
|
[5] |
Vanneman, M.; Dranoff, G. Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer. 2012, 12, 237.
|
[6] |
John, J.; Ismail, M.; Riley, C.; Askham, J.; Morgan, R.; Melcher, A.; Pandha, H. Differential effects of Paclitaxel on dendritic cell function. BMC Immunol. 2010, 11, 14.
|
[7] |
Shen, S.; Li, H.J.; Chen, K.G.; Wang, Y.C.; Yang, X.Z.; Lian, Z.X.; Du, J.Z.; Wang, J. Spatial targeting of tumor-associated macrophages and tumor cells with a pH-sensitive cluster nanocarrier for cancer chemoimmunotherapy. Nano Lett. 2017, 17, 3822–3829.
|
[8] |
Konno, T.; Watanabe, J.; Ishihara, K. Enhanced solubility of paclitaxel using water-soluble and biocompatible 2-methacryloyloxyethyl phosphorylcholine polymers. J. Biomed. Mater. Res. Part A. 2003, 65, A209–214.
|
[9] |
Song, Q.L.; Yin, Y.J.; Shang, L.H.; Wu, T.T.; Zhang, D.; Kong, M.; Zhao, Y.D.; He, Y.Z.; Tan, S.W.; Guo, Y.Y.; Zhang, Z.P. Tumor microenvironment responsive nanogel for the combinatorial antitumor effect of chemotherapy and immunotherapy. Nano Lett. 2017, 17, 6366–6375.
|
[10] |
Ramakrishnan, R.; Gabrilovich, D.I. Novel mechanism of synergistic effects of conventional chemotherapy and immune therapy of cancer. Cancer Immunol. Immunother. 2013, 62, 405–410.
|
[11] |
Zhong, H.; Han, B.H.; Tourkova, I.L.; Lokshin, A.; Rosenbloom, A.; Shurin, M.R.; Shurin, G.V. Low-dose paclitaxel prior to intratumoral dendritic cell vaccine modulates intratumoral cytokine network and lung cancer growth. Clin. Cancer Res. 2007, 13, 5455–5462.
|
[12] |
Spranger, S.; Koblish, H.K.; Horton, B.; Scherle, P.A.; Newton, R.; Gajewski, T.F. Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8+ T cells directly within the tumor microenvironment. J. Immunother. Cancer. 2014, 2, 1–14.
|
[13] |
Curran, M.A.; Montalvo, W.; Yagita, H.; Allison, J.P. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc. Natl. Acad Sci. USA. 2010, 107, 4275–4280.
|
[14] |
Scapin, G.; Yang, X.Y.; Prosise, W.W.; McCoy, M.; Reichert, P.; Johnston, J.M.; Kashi, R.S.; Strickland, C. Structure of full-length human anti-PD1 therapeutic IgG4 antibody pembrolizumab. Nat. Struct. Mol. Biol. 2015, 22, 953.
|
[15] |
Sharpe, A.H.; Pauken, K.E. The diverse functions of the PD1 inhibitory pathway. Nat. Rev. Immunol. 2018, 18, 153.
|
[16] |
Havel, J.J.; Chowell, D.; Chan, T.A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer. 2019, 19, 133.
|
[17] |
Ferns, D.M.; Kema, I.P.; Buist, M.R.; Nijman, H.W.; Kenter, G.G.; Jordanova, E.S. Indoleamine-2,3-dioxygenase (IDO) metabolic activity is detrimental for cervical cancer patient survival. OncoImmunology. 2015, 4, e981457.
|
[18] |
Creelan, B.C.; Antonia, S.J.; Bepler, G.; Garrett, T.J.; Simon, G.R.; Soliman, H.H. Indoleamine 2,3-dioxygenase activity and clinical outcome following induction chemotherapy and concurrent chemoradiation in Stage III non-small cell lung cancer. OncoImmunology. 2013, 2, e23428.
|
[19] |
Speeckaert, R.; Vermaelen, K.; van Geel, N.; Autier, P.; Lambert, J.; Haspeslagh, M.; van Gele, M.; Thielemans, K.; Neyns, B.; Roche, N.; Verbeke, N.; Deron, P.; Speeckaert, M.; Brochez, L. Indoleamine 2,3-dioxygenase, a new prognostic marker in sentinel lymph nodes of melanoma patients. Eur. J. Cancer. 2012, 48, 2004–2011.
|
[20] |
Ino, K.; Yamamoto, E.; Shibata, K.; Kajiyama, H.; Yoshida, N.; Terauchi, M.; Nawa, A.; Nagasaka, T.; Takikawa, O.; Kikkawa, F. Inverse correlation between tumoral indoleamine 2,3-dioxygenase expression and tumor-infiltrating lymphocytes in endometrial cancer: its association with disease progression and survival. Clin. Cancer Res. 2008, 14, 2310–2317.
|
[21] |
Anderson, G.; Maes, M. Interactions of tryptophan and its catabolites with melatonin and the alpha 7 nicotinic receptor in central nervous system and psychiatric disorders: role of the aryl hydrocarbon receptor and direct mitochondria regulation. Int. J. Tryptophan Res. 2017, 10, 117864691769173.
|
[22] |
Brochez, L.; Chevolet, I.; Kruse, V. The rationale of indoleamine 2,3-dioxygenase inhibition for cancer therapy. Eur. J. Cancer. 2017, 76, 167–182.
|
[23] |
Qian, S.; Zhang, M.; Chen, Q.L.; He, Y.Y.; Wang, W.; Wang, Z.Y. IDO as a drug target for cancer immunotherapy: recent developments in IDO inhibitors discovery. RSC Adv. 2016, 6, 61267.
|
[24] |
Smith, C.; Chang, M.Y.; Parker, K.H.; Beury, D.W.; DuHadaway, J.B.; Flick, H.E.; Boulden, J.; Sutanto-Ward, E.; Soler, A.P.; Laury-Kleintop, L.D.; Mandik-Nayak, L.; Metz, R.; Ostrand-Rosenberg, S.; Prendergast, G.C.; Muller, A.J. IDO is a nodal pathogenic driver of lung cancer and metastasis development. Cancer Discov. 2012, 2, 722–735.
|
[25] |
Yang, C.Y.; He, B.; Zheng, Q.; Wang, D.K.; Qin, M.M.; Zhang, H.; Dai, W.B.; Zhang, Q.; Meng, X.B.; Wang, X.Q. Nano-encapsulated tryptanthrin derivative for combined anticancer therapy via inhibiting indoleamine 2,3-dioxygenase and inducing immunogenic cell death. Nanomedicine. 2019, 14, 2423–2440.
|
[26] |
Chuan, X.X.; Song, Q.; Lin, J.L.; Chen, X.H.; Zhang, H.; Dai, W.B.; He, B.; Wang, X.Q.; Zhang, Q. Novel free-paclitaxel-loaded redox-responsive nanoparticles based on a disulfide-linked poly(ethylene glycol)-drug conjugate for intracellular drug delivery: synthesis, characterization, and antitumor activity in vitro and in vivo. Mol. Pharm. 2014, 11, 3656–3670.
|
[27] |
Tang, X.; Rao, J.D.; Yin, S.; Wei, J.J.; Xia, C.Y.; Li, M.; Mei, L.; Zhang, Z.R.; He, Q. PD-L1 knockdown via hybrid micelle promotes paclitaxel induced Cancer-Immunity Cycle for melanoma treatment. Eur. J. Pharm. Sci. 2019, 127, 161–174.
|
[28] |
Galluzzi, L.; Buqué, A.; Kepp, O.; Zitvogel, L.; Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 2017, 17, 97.
|
[29] |
Garg, A.D.; Dudek-Peric, A.M.; Romano, E.; Agostinis, P. Immunogenic cell death. Int. J. Dev. Biol. 2015, 59, 131–140.
|
[30] |
Takagi, S.; Sato, S.; Oh-Hara, T.; Takami, M.; Koike, S.; Mishima, Y.; Hatake, K.; Fujita, N. Platelets promote tumor growth and metastasis via direct interaction between Aggrus/podoplanin and CLEC-2. PLoS One. 2013, 8, e73609.
|
[31] |
Haemmerle, M.; Taylor, M.L.; Gutschner, T.; Pradeep, S.; Cho, M.S.; Sheng, J.T.; Lyons, Y.M.; Nagaraja, A.S.; Dood, R.L.; Wen, Y.F.; Mangala, L.S.; Hansen, J.M.; Rupaimoole, R.; Gharpure, K.M.; Rodriguez-Aguayo, C.; Yim, S.Y.; Lee, J.S.; Ivan, C.; Hu, W.; Lopez-Berestein, G.; Wong, S.T.; Karlan, B.Y.; Levine, D.A.; Liu, J.S.; Afshar-Kharghan, V.; Sood, A.K. Platelets reduce anoikis and promote metastasis by activating YAP1 signaling. Nat. Commun. 2017, 8, 310.
|
[32] |
Ishikawa, M.; Kawai, M.; Maeda, T.; Kagawa, Y. Prediction of neutrophil reduction using plasma paclitaxel concentration after administration in patients with uterine, ovarian, or cervical cancers in an outpatient clinic. Cancer Chemother. Pharmacol. 2018, 81, 399–411.
|
[33] |
Araki, K.; Ito, Y.; Fukada, I.; Kobayashi, K.; Miyagawa, Y.; Imamura, M.; Kira, A.; Takatsuka, Y.; Egawa, C.; Suwa, H.; Ohno, S.; Miyoshi, Y. Predictive impact of absolute lymphocyte counts for progression-free survival in human epidermal growth factor receptor 2-positive advanced breast cancer treated with pertuzumab and trastuzumab plus eribulin or nab-paclitaxel. BMC Cancer. 2018, 18, 1–7.
|
[34] |
Blakely, A.M.; Matoso, A.; Patil, P.A.; Taliano, R.; Machan, J.T.; Miner, T.J.; Lombardo, K.A.; Resnick, M.B.; Wang, L.J. Role of immune microenvironment in gastrointestinal stromal tumours. Histopathology. 2018, 72, 405–413.
|
[35] |
Stasikowska-Kanicka, O.; Wągrowska-Danilewicz, M.; Danilewicz, M. Immunohistochemical analysis of Foxp3+, CD4+, CD8+ cell infiltrates and PD-L1 in oral squamous cell carcinoma. Pathol. Oncol. Res. 2018, 24, 497–505.
|
[36] |
Fortis, S.P.; Mahaira, L.G.; Anastasopoulou, E.A.; Voutsas, I.F.; Perez, S.A.; Baxevanis, C.N. Immune profiling of melanoma tumors reflecting aggressiveness in a preclinical model. Cancer Immunol. Immunother. 2017, 66, 1631–1642.
|