[1] Christinat, N.; Morin-Rivron, D.; Masoodi, M. High-throughput quantitative lipidomics analysis of nonesterified fatty acids in human plasma. J. Proteome Res. 2016, 15, 2228-2235.
[2] Ecker, J.; Scherer, M.; Schmitz, G.; Liebisch, G. A rapid GC-MS method for quantification of positional and geometric isomers of fatty acid methyl esters. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2012, 897, 98-104.
[3] Welty, F.K.; Alfaddagh, A.; Elajami, T.K. Targeting inflammation in metabolic syndrome. Transl. Res. 2016, 167, 257-280.
[4] Kopf, T.; Schmitz, G. Analysis of non-esterified fatty acids in human samples by solid-phase-extraction and gas chromatography/mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2013, 938, 22-26.
[5] Liu, L.Y.; Li, Y.; Guan, C.M.; Li, K.; Wang, C.; Feng, R.N.; Sun, C.H. Free fatty acid metabolic profile and biomarkers of isolated post-challenge diabetes and type 2 diabetes mellitus based on GC-MS and multivariate statistical analysis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2010, 878, 2817-2825.
[6] Dai, L.; Gonçalves, C.M.; Lin, Z.; Huang, J.H.; Lu, H.M.; Yi, L.Z.; Liang, Y.Z.; Wang, D.S.; An, D. Exploring metabolic syndrome serum free fatty acid profiles based on GC-SIM-MS combined with random forests and canonical correlation analysis. Talanta. 2015, 135, 108-114.
[7] de Oliveira, M.; Porto, B.; Faria, I.; de Oliveira, P.; de Castro Barra, P.; Castro, R.; Sato, R. 20 years of fatty acid analysis by capillary electrophoresis. Molecules. 2014, 19, 14094-14113.
[8] Leng, J.P.; Wang, H.Y.; Zhang, L.; Zhang, J.; Wang, H.; Guo, Y.L. A highly sensitive isotope-coded derivatization method and its application for the mass spectrometric analysis of analytes containing the carboxyl group. Anal. Chim. Acta 2013, 758, 114-121.
[9] Trufelli, H.; Famiglini, G.; Termopoli, V.; Cappiello, A. Profiling of non-esterified fatty acids in human plasma using liquid chromatography-electron ionization mass spectrometry. Anal. Bioanal. Chem. 2011, 400, 2933-2941.
[10] Zehethofer, N.; Pinto, D.M.; Volmer, D.A. Plasma free fatty acid profiling in a fish oil human intervention study using ultra-performance liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2008, 22, 2125-2133.
[11] Han, L.D.; Xia, J.F.; Liang, Q.L.; Wang, Y.; Wang, Y.M.; Hu, P.; Li, P.; Luo, G.A. Plasma esterified and non-esterified fatty acids metabolic profiling using gas chromatography-mass spectrometry and its application in the study of diabetic mellitus and diabetic nephropathy. Anal. Chim. Acta. 2011, 689, 85-91.
[12] Bicalho, B.; David, F.; Rumplel, K.; Kindt, E.; Sandra, P. Creating a fatty acid methyl ester database for lipid profiling in a single drop of human blood using high resolution capillary gas chromatography and mass spectrometry. J. Chromatogr., A. 2008, 1211, 120-128.
[13] Wu, X.L.; Tong, Y.D.; Shankar, K.; Baumgardner, J.N.; Kang, J.; Badeaux, J.; Badger, T.M.; Ronis, M.J. Lipid fatty acid profile analyses in liver and serum in rats with nonalcoholic steatohepatitis using improved gas chromatography-mass spectrometry methodology. J. Agric. Food Chem. 2011, 59, 747-754.
[14] Ostermann, A.I.; Müller, M.; Willenberg, I.; Schebb, N.H. Determining the fatty acid composition in plasma and tissues as fatty acid methyl esters using gas chromatography - a comparison of different derivatization and extraction procedures. Prostaglandins Leukot. Essent. Fatty Acids. 2014, 91, 235-241.
[15] Yi, L.Z.; He, J.; Liang, Y.Z.; Yuan, D.L.; Chau, F.T. Plasma fatty acid metabolic profiling and biomarkers of type 2 diabetes mellitus based on GC/MS and PLS-LDA. FEBS Lett. 2006, 580, 6837-6845.
[16] Yi, L.Z.; He, J.; Liang, Y.Z.; Yuan, D.L.; Gao, H.Y.; Zhou, H.H. Simultaneously quantitative measurement of comprehensive profiles of esterified and non-esterified fatty acid in plasma of type 2 diabetic patients. Chem. Phys. Lipids. 2007, 150, 204-216.
[17] La Nasa, J.; Modugno, F.; Aloisi, M.; Lluveras-Tenorio, A.; Bonaduce, I. Development of a GC/MS method for the qualitative and quantitative analysis of mixtures of free fatty acids and metal soaps in paint samples. Anal. Chim. Acta. 2018, 1001, 51-58.
[18] Gao, X.F.; Pujos-Guillot, E.; Sébédio, J.L. Development of a quantitative metabolomic approach to study clinical human fecal water metabolome based on trimethylsilylation derivatization and GC/MS analysis. Anal. Chem. 2010, 82, 6447-6456.
[19] Prata, V.d.e.M.; Emídio, E.S.; Dorea, H.S. New catalytic ultrasound method for derivatization of 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid in urine, with analysis by GC-MS/MS. Anal. Bioanal. Chem. 2012, 403, 625-632.
[20] Lien, S.K.; Kvitvang, H.F.; Bruheim, P. Utilization of a deuterated derivatization agent to synthesize internal standards for gas chromatography-tandem mass spectrometry quantification of silylated metabolites. J. Chromatogr. A .2012, 1247, 118-124.
[21] Pietrogrande, M.C.; Bacco, D. GC-MS analysis of water-soluble organics in atmospheric aerosol: response surface methodology for optimizing silyl-derivatization for simultaneous analysis of carboxylic acids and sugars. Anal. Chim. Acta. 2011, 689, 257-264.
[22] van den Berg, J.; van den Berg, K.; Boon, J. Determination of the degree of hydrolysis of oil paint samples using a two-step derivatisation method and on-column GC/MS. Prog. Org. Coat. 2001, 41, 143-155.
[23] Cocito, C.; Delfini, C. Simultaneous determination by GC of free and combined fatty acids and sterols in grape musts and yeasts as silanized compounds. Food Chem. 1994, 50, 297-305.
[24] Jones, P.M.; Quinn, R.; Fennessey, P.V.; Tjoa, S.; Goodman, S.I.; Fiore, S.; Burlina, A.B.; Rinaldo, P.; Boriack, R.L.; Bennett, M.J. Improved stable isotope dilution-gas chromatography-mass spectrometry method for serum or plasma free 3-hydroxy-fatty acids and its utility for the study of disorders of mitochondrial fatty acid beta-oxidation. Clin. Chem. 2000, 46, 149-155. |