[1] Verma, P.; Mathur, A.K.; Srivastava, A.; Mathur, A. Emerging trends in research on spatial and temporal organization of terpenoid indole alkaloid pathway in Catharanthus roseus: a literature update. Protoplasma. 2012, 249, 255–268.
[2] Tittarelli, R.; Mannocchi, G.; Pantano, F.; Romolo, F.S. Recreational use, analysis and toxicity of tryptamines. Curr Neuropharmacol. 2015, 13, 26–46.
[3] Nichols, D.E.; Nichols, C.D. Serotonin receptors. Chem. Rev. 2008, 108, 1614–1641.
[4] Watson, N.; Diamandis, T.; Gonzales-Portillo, C.; Reyes, S.; Borlongan, C.V. Melatonin as an antioxidant for stroke neuroprotection. Cell Transplant. 2016, 25, 883–891.
[5] Martins, C.P.B.; Freeman, S.; Alder, J.F.; Passie, T.; Brandt, S.D. Profiling psychoactive tryptamine-drug synthesis by focusing on detection using mass spectrometry. TrAC Trends Anal. Chem. 2010, 29, 285–296.
[6] Reyes, F.; Martín, R.; Fernandez, R. Granulatamides A and B, cytotoxic tryptamine derivatives from the soft coral Eunicella granulata. J. Nat. Prod. 2006, 69, 668–670.
[7] Yamazaki, H.; Wewengkang, D.S.; Nishikawa, T.; Rotinsulu, H.; Mangindaan, R.E.; Namikoshi, M. Two new tryptamine derivatives, leptoclinidamide and (–)-leptoclinidamine B, from an Indonesian ascidian Leptoclinides dubius. Mar. Drugs. 2012, 10, 349–357.
[8] Chávez, D.; Acevedo, L.A.; Mata, R. Tryptamine derived amides and acetogenins from the seeds of Rollinia mucosa. J. Nat. Prod. 1999, 62, 1119–1122.
[9] Wu, Y.C.; Chang, F.R.; Chen, C.Y. Tryptamine-derived amides and alkaloids from the seeds of Annona atemoya. J. Nat. Prod. 2005, 68, 406–408.
[10] Jeong, S.Y.; Ishida, K.; Ito, Y.; Okada, S.; Murakami, M. Bacillamide, a novel algicide from the marine bacterium, Bacillus sp. SY-1, against the harmful dinoflagellate, Cochlodinium polykrikoides. Tetrahedron Lett. 2003, 44, 8005–8007.
[11] Socha, A.M.; Long, R.A.; Rowley, D.C. Bacillamides from a hypersaline microbial mat bacterium. J. Nat. Prod. 2007, 70, 1793–1795.
[12] Lang, G.; Kalvelage, T.; Peters, A.; Wiese, J.; Imhoff, J.F. Linear and cyclic peptides from the entomopathogenic bacterium Xenorhabdus nematophilus. J. Nat. Prod. 2008, 71, 1074–1077.
[13] Xie, C.L.; Xia, J.M.; Su, R.Q.; Li, J.; Liu, Y.H.; Yang, X.W.; Yang, Q. Bacilsubteramide A, a new indole alkaloid, from the deep-sea-derived Bacillus subterraneus 11593. Nat. Prod. Res. 2018, 32, 2553–2557.
[14] Li, J.; Chen, G.; Webster, J.M. Nematophin, a novel antimicrobial substance produced by Xenorhabdus nematophilus (Enterobactereaceae). Can. J. Microbiol. 1997, 43, 770–773.
[15] Salikov, R.F.; Belyy, A.Y.; Khusnutdinova, N.S.; Vakhitova, Y.V.; Tomilov, Y.V. Synthesis and cytotoxic properties of tryptamine derivatives. Bioorg. Med. Chem. Lett. 2015, 25, 3597–3600.
[16] Oliveira, R.R.; Brito, T.B.; Nepel, A.; Costa, E.V.; Barison, A.; Nunes, R.S.; Santos, R.L.; Cavalcanti, S.C. Synthesis, activity, and QSAR studies of tryptamine derivatives on third-instar larvae of Aedes aegypti Linn. Med. Chem. 2014, 10, 580–587.
[17] Himmler, T.; Pirro, F.; Schmeer, N. Synthesis and antibacterial in vitro activity of novel analogues of nematophin. Bioorg. Med. Chem. Lett. 1998, 8, 2045–2050.
[18] Schuck, D.C.; Jordão, A.K.; Nakabashi, M.; Cunha, A.C.; Ferreira, V.F.; Garcia, C.R. Synthetic indole and melatonin derivatives exhibit antimalarial activity on the cell cycle of the human malaria parasite Plasmodium falciparum. Eur. J. Med. Chem. 2014, 78, 375–382.
[19] Zhou, M.J.; Liu, F.W.; Yang, X.Y.; Jin, J.; Dong, X.; Zeng, K.W.; Liu, D.; Zhang, Y.T.; Ma, M.; Yang, D.H. Bacillibactin and bacillomycin analogues with cytotoxicities against human cancer cell lines from marine bacillus sp. PKU-MA00093 and PKU-MA00092. Mar. Drugs. 2018, 16, E22.
[20] Kieser, T.; Bibb, M.; Buttner, M.; Chater, K.; Hopwood, D. Practical Streptomyces Genetics; The John Innes Foundation: Norwich, UK. 2000, 406–422.
[21] Heuer, H.; Krsek, M.; Baker, P.; Smalla, K.; Wellington, E.M. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 1997, 63, 3233–3241.
[22] Hoye, T.R.; Jeffrey, C.S.; Shao, F. Mosher ester analysis for the determination of absolute configuration of stereogenic (chiral) carbinol carbons. Nat. Protoc. 2007, 2, 2451–2458.
[23] Dale, J.A.; Mosher, H.S. Nuclear magnetic resonance enantiomer regents. Configurational correlations via nuclear magnetic resonance chemical shifts of diastereomeric mandelate, O-methylmandelate, and α-methoxy-α-trifluoromethylphenylacetate (MTPA) esters. J. Am. Chem. Soc. 1973, 95, 512–519.
[24] Li, Y.; Li, X.F.; Kim, D.S.; Choi, H.D.; Son, B.W. Indolyl alkaloid derivatives, Nb-acetyltryptamine and oxaline from a marine-derived fungus. Arch. Pharm. Res. 2003, 26, 21–23.
[25] Proschak, A.; Schultz, K.; Herrmann, J.; Dowling, A.J.; Brachmann, A.O.; ffrench-Constant, R.; Müller, R.; Bode, H.B. Cytotoxic fatty acid amides from Xenorhabdus. ChemBioChem. 2011, 12, 2011–2015.
[26] Zhao, X.J.; Wang, H.F.; Zhao, D.Q.; Hai-Xia, J.I.; Pei, Y.H.; Bai, J. Isolation and identification of the chemical constituents from roots of Angelica sinensis (Oliv.) Diels. J. Shenyang Pharm. Univ. 2013, 30, 182–185, 221.
[27] Barsby, T.; Kelly, M.T.; Andersen, R.J. Tupuseleiamides and basiliskamides, new acyldipeptides and antifungal polyketides produced in culture by a Bacillus laterosporus isolate obtained from a tropical marine habitat. J. Nat. Prod. 2002, 65, 1447–1451.
[28] Liu, Y.; Ding, S.; Dietrich, R.; Märtlbauer, E.; Zhu, K. Corrigendum: A Biosurfactant-Inspired Heptapeptide with Improved Specificity to Kill MRSA [J]. Angew. Chem. Int. Ed. Engl. 2017, 56,5651. |