[1] Partsch, C.J.; Sippell, W.G. Pathogenesis and epidemiology of precocious puberty. Effects of exogenous oestrogens. Hum. Reprod. Update. 2001, 7, 292–302.
[2] Dworatzek, E.; Mahmoodzadeh, S. Targeted basic research to highlight the role of estrogen and estrogen receptors in the cardiovascular system. Pharmacol. Res. 2017, 119, 27–35.
[3] Grumbach, M.M. Estrogen, bone, growth and sex: A sea change in conventional wisdom. J. Pediatr. Endocrinol. Metab. 2000, 13 Suppl 6, 1439–1455.
[4] Nelson, L.R.; Bulun, S.E. Estrogen production and action. J. Am. Acad Dermatol. 2001, 45, S116–124.
[5] Otsuka, M.; Kadokawa, H. Gpr30 mediates estrone, estriol, and estradiol to suppress gonadotropin-releasing hormone-induced luteinizing hormone secretion in the anterior pituitary of heifers. J. Reprod. Dev. 2017, 63, 519–525.
[6] Wang, X.; Sang, X.; Diorio, C.; Lin, S.X.; Doillon, C.J. In vitro interactions between mammary fibroblasts (hs 578bst) and cancer epithelial cells (mcf-7) modulate aromatase, steroid sulfatase and 17beta-hydroxysteroid dehydrogenases. Mo.l Cell Endocrinol. 2015, 412, 339–348.
[7] Santen, R.J.; Leszczynski, D.; Tilson-Mallet, N.; Feil, P.D.; Wright, C.; Manni, A.; Santner, S.J. Enzymatic control of estrogen production in human breast cancer: Relative significance of aromatase versus sulfatase pathways. Ann. NY. Acad Sci. 1986, 464, 126–137.
[8] Renoir, J.M. Estradiol receptors in breast cancer cells: Associated co-factors as targets for new therapeutic approaches. Steroids. 2012, 77, 1249–1261.
[9] Foster, P.A. Steroid metabolism in breast cancer. Minerva Endocrinol. 2008, 33, 27–37.
[10] Choate, J.V.; Resko, J.A. Paradoxical effect of an aromatase inhibitor, cgs 20267, on aromatase activity in guinea pig brain. J. Steroid Biochem. Mol. Biol. 1996, 58, 411–415.
[11] Long, B.J.; Jelovac, D.; Thiantanawat, A.; Brodie, A.M. The effect of second-line antiestrogen therapy on breast tumor growth after first-line treatment with the aromatase inhibitor letrozole: Long-term studies using the intratumoral aromatase postmenopausal breast cancer model. Clin. Cancer Res. 2002, 8, 2378–2388.
[12] Jelovac, D.; Macedo, L.; Goloubeva, O.G.; Handratta, V.; Brodie, A.M. Additive antitumor effect of aromatase inhibitor letrozole and antiestrogen fulvestrant in a postmenopausal breast cancer model. Cancer Res. 2005, 65, 5439–5444.
[13] Liang, Y.J.; Zhang, H.M.; Wu, Y.Z; Hao, Q.; Wang, J.D; Hu, Y.L. Inhibiting effect of letrozole combined with curcumin on xenografted endometrial carcinoma growth in nude mice. Chin. J. Cancer. 2010, 29, 9–14.
[14] Smith, I.; Yardley, D; Burris, H; De Boer, R.; Amadori, D.; McIntyre, K.; Ejlertsen, B.; Gnant, M.; Jonat, W.; Pritchard, K.I.; Dowsett, M.; Hart, L.; Poggio, S.; Comarella, L.; Salomon, H.; Wamil, B.; O’Shaughnessy, J. Comparative efficacy and safety of adjuvant letrozole versus anastrozole in postmenopausal patients with hormone receptor-positive, node-positive early breast cancer: Final results of the randomized phase iii femara versus anastrozole clinical evaluation (face) trial. J. Clin. Oncol. 2017, 35, 1041–1048.
[15] Dellapasqua, S.; Colleoni, M. Letrozole. Expert Opin. Drug Metab. Toxicol. 2010, 6, 251-259.
[16] Wang, Z.; Butner, J.D.; Cristini, V.; Deisboeck, T.S. Integrated pk-pd and agent-based modeling in oncology. J. Pharmacokinet Pharmacodyn. 2015, 42, 179–189.
[17] Papich, M.G. Pharmacokinetic-pharmacodynamic (pk-pd) modeling and the rational selection of dosage regimes for the prudent use of antimicrobial drugs. Vet. Microbiol. 2014, 171, 480–486.
[18] Rocchetti, M.; Simeoni, M.; Pesenti, E.; De Nicolao, G.; Poggesi, I. Predicting the active doses in humans from animal studies: A novel approach in oncology. Eur. J. Cancer. 2007, 43, 1862–1868.
[19] Eigenmann, M.J.; Frances, N.; Hoffmann, G.; Lave, T.; Walz, A.C. Combining nonclinical experiments with translational pkpd modeling to differentiate erlotinib and gefitinib. Mol. Cancer Ther. 2016, 15, 3110–3119.
[20] Pfister, C.U.; Martoni, A.; Zamagni, C.; Lelli, G.; De Braud, F.; Souppart, C.; Duval, M.; Hornberger, U. Effect of age and single versus multiple dose pharmacokinetics of letrozole (femara) in breast cancer patients. Biopharm. Drug Dispos. 2001, 22, 191–197.
[21] Dowsett, M.; Pfister, C.; Johnston, S.R.; Miles, D.W.; Houston, S.J.; Verbeek, J.A.; Gundacker, H.; Sioufi, A.; Smith, I.E. Impact of tamoxifen on the pharmacokinetics and endocrine effects of the aromatase inhibitor letrozole in postmenopausal women with breast cancer. Clin. Cancer Res. 1999, 5, 2338–2343.
[22] Desta, Z.; Kreutz, Y.; Nguyen, A.T.; Li, L.; Skaar, T.; Kamdem, L.K.; Henry, N.L.; Hayes, D.F.; Storniolo, A.M.; Stearns, V.; Hoffmann, E.; Tyndale, R.F.; Flockhart, D.A. Plasma letrozole concentrations in postmenopausal women with breast cancer are associated with cyp2a6 genetic variants, body mass index, and age. Clin. Pharmacol. Ther. 2011, 90, 693–700.
[23] Liu, X.D.; Xie, L.; Zhong, Y.; Li, C.X. Gender difference in letrozole pharmacokinetics in rats. Acta Pharmacol. Sin. 2000, 21, 680–684.
[24] Dave, N.; Gudelsky, G.A.; Desai, P.B. The pharmacokinetics of letrozole in brain and brain tumor in rats with orthotopically implanted c6 glioma, assessed using intracerebral microdialysis. Cancer Chemother. Pharmacol. 2013, 72, 349–357.
[25] Wempe, M.F.; Buchanan, C.M.; Buchanan, N.L.; Edgar, K.J.; Hanley, G.A.; Ramsey, M.G.; Skotty, J.S.; Rice, P.J. Pharmacokinetics of letrozole in male and female rats: Influence of complexation with hydroxybutenyl-beta cyclodextrin. J. Pharm. Pharmacol. 2007, 59, 795–802.
[26] Tanii, H.; Shitara, Y.; Horie, T. Population pharmacokinetic analysis of letrozole in japanese postmenopausal women. Eur. J. Clin. Pharmacol. 2011, 67, 1017–1025.
[27] Shao, R.; Yu, L.Y.; Lou, H.G.; Ruan, Z.R.; Jiang, B.; Chen, J.L. Development and validation of a rapid lc-ms/ms method to quantify letrozole in human plasma and its application to therapeutic drug monitoring. Biomed. Chromatogr. 2016, 30, 632–637.
[28] Precht, J.C.; Ganchev, B.; Heinkele, G.; Brauch, H.; Schwab, M.; Murdter, T.E. Simultaneous quantitative analysis of letrozole, its carbinol metabolite, and carbinol glucuronide in human plasma by lc-ms/ms. Anal. Bioanal. Chem. 2012, 403, 301–308.
[29] Acharjya, S.K.; Bhattamisra, S.K.; Muddana, B.R.; Bera, R.V.; Panda, P.; Panda, B.P.; Mishra, G. Development of a high-performance liquid chromatographic method for determination of letrozole in wistar rat serum and its application in pharmacokinetic studies. Sci. Pharm. 2012, 80, 941–953.
[30] Dyderski, S.; Grzeskowiak, E.; Szalek, E.; Szkutnik, D.; Dubai, V.; Drobnik, L. Comparative bioavailability study of two preparations of letrozole in healthy subjects. Arzneimittelforschung. 2005, 55, 514–519.
[31] Beer, B.; Schubert, B.; Oberguggenberger, A.; Meraner, V.; Hubalek, M.; Oberacher, H. Development and validation of a liquid chromatography-tandem mass spectrometry method for the simultaneous quantification of tamoxifen, anastrozole, and letrozole in human plasma and its application to a clinical study. Anal. Bioana.l Chem. 2010, 398, 1791–1800.
[32] Wang, K.; Wu, Y.; Chi, Z.; Shu, C.; Li, L.; Wei, J.; Tao, L.; Ma, P.; Ding, L. A highly sensitive lc-ms/ms method for determination of ketoconazole in human plasma: Application to a clinical study of the exposure to ketoconazole in patients after topical administration. J. Pharm. Biomed. Anal. 2016, 128, 504–509.
[33] Yuan, Y.; Zhou, X.; Li, J.; Ye, S.; Ji, X.; Li, L.; Zhou, T.; Lu, W. Development and validation of a highly sensitive lc-ms/ms method for the determination of dexamethasone in nude mice plasma and its application to a pharmacokinetic study. Biomed. Chromatogr. 2015, 29, 578–583.
[34] Ji, X.; Chen, Y.; Li, R.; Zhou, T.; Lu, W. A high-sensitivity lc-ms/ms method for the determination of 4-methyl-piperazine-1-carbodithioc acid 3-cyano-3, 3-diphenylpropyl ester hydrochloride in rat plasma and its application to a pharmacokinetics study. Biomed. Chromatogr. 2012, 26, 1196–1201.
[35] Su, Q.; Li, J.; Ji, X.; Li, J.; Zhou, T.; Lu, W.; Li, L. An lc-ms/ms method for the quantitation of cabozantinib in rat plasma: Application to a pharmacokinetic study. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2015, 985, 119–123.
[36] Yao, Q.; Li, J.; Yao, Y.; Chen, R.; Chen, W.; Su, H.; Yang, L.; Xue, J.; Lu, W.; Zhou, T. A highly sensitive lc-ms/ms method for the determination of 21-hydroxy deflazacort in nude mice plasma and its application to a pharmacokinetic study. J. Chin. Pharm. Sci. 2017.
[37] Jin, S.J.; Jung, J.A.; Cho, S.H.; Kim, U.J.; Choe, S.; Ghim, J.L.; Noh, Y.H.; Park, H.J.; Kim, J.C.; Jung, J.A.; Lim, H.S.; Bae, K.S. The pharmacokinetics of letrozole: Association with key body mass metrics. Int. J. Clin. Pharmacol. Ther. 2012, 50, 557–565. |