[1] |
Gętek, M.; Czech, N.; Muc-Wierzgoń, M.; Grochowska-Niedworok, E.; Kokot, T.; Nowakowska-Zajdel, E. The active role of leguminous plant components in type 2 diabetes. Evid. Based. Complement. Altern. Med. 2014, 2014, 293961.
|
[2] |
Zaheer, K.; Humayoun Akhtar, M. An updated review of dietary isoflavones: Nutrition, processing, bioavailability and impacts on human health. Crit. Rev. Food Sci. Nutr. 2017, 57, 1280–1293.
|
[3] |
Kim, M.A.; Kim, M.J. Isoflavone profiles and antioxidant properties in different parts of soybean sprout. J. Food Sci. 2020, 85, 689–695.
|
[4] |
Tsugami, Y.; Wakasa, H.; Nishimura, T.; Kobayashi, K. Genistein directly represses the phosphorylation of STAT5 in lactating mammary epithelial cells. ACS Omega. 2021, 6, 22765–22772.
|
[5] |
Yu, M.M.; Qi, H.; Gao, X.J. Daidzein promotes milk synthesis and proliferation of mammary epithelial cells via the estrogen receptor α-dependent NFκB1 activation. Anim. Biotechnol. 2022, 33, 43–52.
|
[6] |
Yu, Y.Y.; Xing, Y.W.; Zhang, Q.; Zhang, Q.Q.; Huang, S.J.; Li, X.X.; Gao, C. Soy isoflavone genistein inhibits hsa_circ_0031250/miR-873-5p/FOXM1 axis to suppress non-small-cell lung cancer progression. IUBMB Life. 2021, 73, 92–107.
|
[7] |
Chun, H.S.; Chang, H.J.; Choi, E.H.; Kim, H.J.; Ku, K.H. Molecular and absorption properties of 12 soy isoflavones and their structure-activity relationship with selected biological activities. Biotechnol. Lett. 2005, 27, 1105–1111.
|
[8] |
Piao, Y.Z.; Eun, J.B. Physicochemical characteristics and isoflavones content during manufacture of short-time fermented soybean product (cheonggukjang). J. Food Sci. Technol. 2020, 57, 2190–2197.
|
[9] |
Penha, C.B.; Falcão, H.G.; Ida, E.I.; Speranza, P.; Kurozawa, L.E. Enzymatic pretreatment in the extraction process of soybean to improve protein and isoflavone recovery and to favor aglycone formation. Food Res. Int. 2020, 137, 109624.
|
[10] |
Bustamante-Rangel, M.; Delgado-Zamarreño, M.M.; Pérez-Martín, L.; Rodríguez-Gonzalo, E.; Domínguez-Álvarez, J. Analysis of isoflavones in foods. Compr. Rev. Food Sci. Food Saf. 2018, 17, 391–411.
|
[11] |
Zhao, X.J.; Li, Y.; Wang, X. Progress in microbial conversion of soy isoflavones. Acta Microbiol. Sin. 2020, 60, 211–226.
|
[12] |
Han, B.J.; Li, W.; Jiang, G.B.; Lai, S.H.; Zhang, C.; Zeng, C.C.; Liu, Y.J. Effects of daidzein in regards to cytotoxicity in vitro, apoptosis, reactive oxygen species level, cell cycle arrest and the expression of caspase and Bcl-2 family proteins. Oncol. Rep. 2015, 34, 1115–1120.
|
[13] |
Mukherjee, S.; Acharya, B.R.; Bhattacharyya, B.; Chakrabarti, G. Genistein arrests cell cycle progression of A549 cells at the G(2)/M phase and depolymerizes interphase microtubules through binding to a unique site of tubulin. Biochemistry. 2010, 49, 1702–1712.
|
[14] |
Sun, J.; Shi, L.; Ji, Q.; Wang, Y.Y.; Zhang, J. Role of autophagy in genistein inhibition on proliferation of colon cancer cell line HCT116.Academic J. Shanghai Univ. Tradit. Chin. Med. 2018, 32, 60–64.
|
[15] |
Liu, C.; Watt, D. S.; Frasinyuk, M. S.; Sviripa, V. M.; Zhang, W.; Bondarenko, S. P. Cytisine-linked isoflavonid antineoplastic agents for the treatment of cancer [P]. US:10188743, 2019-01-29.
|
[16] |
Lian, M.Q.; Liu, Y.C.; Guo, C.Y. Synthetic and analytical method establishment of 3-(4-chlorophenyl)-7-[2-(piperazin-l-yl)ethoxy]-4H-chromen-4-one. J. Hebei Univ. Sci. Technol. 2022, 43, 300–307.
|
[17] |
Arlee, N.; Ampawong, S.; Limpanont, Y.; Arunrungvichian, K.; Kongkiatpaiboon, S.; Thaenkham, U. LC-MS/MS analysis of didehydrostemofoline from Stemona collinsiae roots extracts in rats plasma and pharmacokinetics profile after oral administration. Fitoterapia. 2024, 176, 106041.
|
[18] |
Ren, X.K.; Wang, Z.; Wang, X.S.; Li, Y.B.; Tan, Y.F. Determination of aloesone in rat plasma by LC–MS/MS spectrometry and its application in a pharmacokinetic study. Bioanalysis. 2024, 16, 453–460.
|
[19] |
Christie, J.T.; Bruce, M.; Pfitzer, S.; Laubscher, L.; Raath, J.P.; Laurence, M.; Kellermann, T. Validation of a LC-MS/MS method to simultaneously quantify thiafentanil and naltrexone in plasma for pharmacokinetic studies in wildlife. J. Chromatogr. B. 2024, 1233, 123990.
|
[20] |
Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China: Vol 4. Beijing: China Medical Science and Technology Press, 2020.
|
[21] |
Jung, Y.S.; Rha, C.S.; Baik, M.Y.; Baek, N.I.; Kim, D.O. A brief history and spectroscopic analysis of soy isoflavones. Food Sci. Biotechnol. 2020, 29, 1605–1617.
|
[22] |
Manchón, N.; D’Arrigo, M.; García-Lafuente, A.; Guillamón, E.; Villares, A.; Martínez, J.A.; Ramos, A.; Rostagno, M.A. Comparison of different types of stationary phases for the analysis of soy isoflavones by HPLC. Anal. Bioanal. Chem. 2011, 400, 1251–1261.
|
[23] |
shen, W.Y. An improved calibrated normalized resolution product (r*') and the application in HPLC fingerprints of soy isoflavone extract. J. Chin. Pharm. Sci. 2015, 24, 177–184.
|
[24] |
Klejdus, B.; Vacek, J.; Benesová, L.; Kopecký, J.; Lapcík, O.; Kubán, V. Rapid-resolution HPLC with spectrometric detection for the determination and identification of isoflavones in soy preparations and plant extracts. Anal. Bioanal. Chem. 2007, 389, 2277–2285.
|
[25] |
Baranowska, I.; Magiera, S. Analysis of isoflavones and flavonoids in human urine by UHPLC. Anal. Bioanal. Chem. 2011, 399, 3211–3219.
|
[26] |
Muchohi, S.N.; Thuo, N.; Karisa, J.; Muturi, A.; Kokwaro, G.O.; Maitland, K. Determination of ciprofloxacin in human plasma using high-performance liquid chromatography coupled with fluorescence detection: Application to a population pharmacokinetics study in children with severe malnutrition. J. Chromatogr. B. 2011, 879, 146–152.
|
[27] |
Bai, Y.T.; Wen, H.M.; Zhou, H.; Qiu, Y.; Shan, C.X. Determination of daidzein and its pharmacokinetics in rat plasma by UPLC. Chin. Pharmacol. Bull. 2010, 26, 1512–1515.
|
[28] |
Bai, Y.T.; Wen, H.M.; Peng, B.; Xiong, H.W. Determination of genistein and its pharmacokinetics in rat plasma by UPLC. Tradit. Chin. Drug Res. Clin. Pharmacol. 2010, 21, 512–514.
|