| [1] |
Wang, H.D. Research progress on the chemical composition and comprehensive utilization of Xanthoceras sorbifolia Bunge. Chin. Wild Plant Resour. 1998, 17, 13–16.
|
| [2] |
Li, Z.L.; Luo, B.; Cheng, F.; Li, F.L.; Zou, K. Studies on the chemical constituents of the spermoderm of Xanthoceras sorbifolia Bunge. Lishizhen Med. Mater. Med. Res. 2007, 18, 1329–1330.
|
| [3] |
Zhang, S.; Zu, Y.G.; Fu, Y.J.; Luo, M.; Liu, W.; Li, J.; Efferth, T. Supercritical carbon dioxide extraction of seed oil from yellow horn (Xanthoceras sorbifolia Bunge.) and its anti-oxidant activity. Bioresour. Technol. 2010, 101, 2537–2544.
|
| [4] |
Liang, Q.; Fang, H.C.; Liu, J.N.; Zhang, B.H.; Bao, Y.; Hou, W.R.; Yang, K.Q. Analysis of the nutritional components in the kernels of yellowhorn (Xanthoceras sorbifolium Bunge) accessions. J. Food Compos. Anal. 2021, 100, 103925.
|
| [5] |
Yu, H.Y.; Fan, S.Q.; Bi, Q.X.; Wang, S.X.; Hu, X.Y.; Chen, M.Y.; Wang, L.B. Seed morphology, oil content and fatty acid composition variability assessment in yellow horn (Xanthoceras sorbifolium Bunge) germplasm for optimum biodiesel production. Ind. Crops Prod. 2017, 97, 425–430.
|
| [6] |
Venegas-Calerón, M.; Ruíz-Méndez, M.V.; Martínez-Force, E.; Garcés, R.; Salas, J.J. Characterization of Xanthoceras sorbifolium Bunge seeds: lipids, proteins and saponins content. Ind. Crops Prod. 2017, 109, 192–198.
|
| [7] |
Sassa, T.; Kihara, A. Metabolism of very long-chain fatty acids: genes and pathophysiology. Biomol. Ther. 2014, 22, 83–92.
|
| [8] |
Merrill, A.H.; Schmelz, E.M.; Wang, E.; Dillehay, D.L.; Rice, L.G.; Meredith, F.; Riley, R.T. Importance of sphingolipids and inhibitors of sphingolipid metabolism as components of animal diets. J. Nutr. 1997, 127, 830S–833S.
|
| [9] |
Kikas, P.; Chalikias, G.; Tziakas, D. Cardiovascular implications of sphingomyelin presence in biological membranes. Eur. Cardiol. 2018, 13, 42–45.
|
| [10] |
Amminger, G.P.; Schäfer, M.R.; Klier, C.M.; Slavik, J.M.; Holzer, I.; Holub, M.; Goldstone, S.; Whitford, T.J.; McGorry, P.D.; Berk, M. Decreased nervonic acid levels in erythrocyte membranes predict psychosis in help-seeking ultra-high-risk individuals. Mol. Psychiatry. 2012, 17, 1150–1152.
|
| [11] |
Kageyama, Y.; Kasahara, T.; Nakamura, T.; Hattori, K.; Deguchi, Y.; Tani, M.; Kuroda, K.; Yoshida, S.; Goto, Y.I.; Inoue, K.; Kato, T. Plasma nervonic acid is a potential biomarker for major depressive disorder: a pilot study. Int. J. Neuropsychopharmacol. 2018, 21, 207–215.
|
| [12] |
Lewkowicz, N.; Piątek, P.; Namiecińska, M.; Domowicz, M.; Bonikowski, R.; Szemraj, J.; Przygodzka, P.; Stasiołek, M.; Lewkowicz, P. Naturally occurring nervonic acid ester improves myelin synthesis by human oligodendrocytes. Cells. 2019, 8, 786.
|
| [13] |
Sargent, J.R.; Coupland, K.; Wilson, R. Nervonic acid and demyelinating disease. Med. Hypotheses. 1994, 42, 237–242.
|
| [14] |
Du, N.; Wang, L.E.; Shi, X.R.; Cui, X.Y.; Zhang, F.; Zhang, Y.H. Augmentative effect of tetrandrine on Pentobarbital hypnosis mediated by 5-HT1A and 5-HT2A/2V receptors in mice. J. Chin. Pharm. Sci. 2008, 17, 192–196.
|
| [15] |
Song, W.T.; Zhang, K.; Xue, T.; Han, J.R.; Peng, F.D.; Ding, C.G.; Lin, F.; Li, J.J.; Sze, F.T.A.; Gan, J.W.; Chen, X.Y. Cognitive improvement effect of nervonic acid and essential fatty acids on rats ingesting Acer truncatum Bunge seed oil revealed by lipidomics approach. Food Funct. 2022, 13, 2475–2490.
|
| [16] |
Victorri-Vigneau, C.; Dailly, E.; Veyrac, G.; Jolliet, P. Evidence of zolpidem abuse and dependence: results of the French Centre for Evaluation and Information on Pharmacodependence (CEIP) network survey. Br. J. Clin. Pharmacol. 2007, 64, 198–209.
|
| [17] |
Lichstein, K.L.; Nau, S.D.; Wilson, N.M.; Aguillard, R.N.; Lester, K.W.; Bush, A.J.; McCrae, C.S. Psychological treatment of hypnotic-dependent insomnia in a primarily older adult sample. Behav. Res. Ther. 2013, 51, 787–796.
|