中国药学(英文版) ›› 2025, Vol. 34 ›› Issue (11): 1003-1023.DOI: 10.5246/jcps.2025.11.075
吕慧婕1,2,#, 彭俊1,2,#, 黄旭1, 许拓3, 张天成2,*(
), 凌宏艳4,*(
)
收稿日期:2025-07-18
修回日期:2025-08-24
接受日期:2025-09-17
出版日期:2025-12-02
发布日期:2025-12-02
通讯作者:
张天成, 凌宏艳
Huijie Lv1,2,#, Jun Peng1,2,#, Xu Huang1, Tuo Xu3, Tianchen Zhang2,*(
), Hongyan Ling4,*(
)
Received:2025-07-18
Revised:2025-08-24
Accepted:2025-09-17
Online:2025-12-02
Published:2025-12-02
Contact:
Tianchen Zhang, Hongyan Ling
About author:# Huijie Lv and Jun Peng contributed equally to this work.
Supported by:摘要:
研究发现二氢杨梅素(Dihydromyricetin, DHM)对中枢神经系统损伤有明显的改善作用。因此, 本实验拟观察DHM是否可改善T2DM大鼠认知功能障碍, 及其机制是否通过抑制JNK信号从而下调ERS实现。本文采用4w高糖高脂饮食联合STZ一次性腹腔注射的方法构建T2DM模型。接着进行以下检测:尾静脉采血测定空腹血糖, 水迷宫(Morris water maze, MWM)和Y迷宫检测大鼠认知功能, 随后断颈处死大鼠, 取海马进行苏木精-伊红(Hematoxylin-eosin, HE)染色, 观察海马神经细胞损伤情况、WB检测海马组织凋亡蛋白Bax和抗凋亡蛋白Bcl-2的表达水平、Elisa检测海马p-tau, Aβ表达水平。随后分别用或不用DHM处理(250 mg/kg/d, 灌胃)12周后, 进行上述相关指标的检测, 观察DHM对大鼠认知功能、海马损伤的影响。各组剩余大鼠进行侧脑室置管给药(TUDCA, 衣霉素, SP600125, 茴香霉素)后, 在进行上述相关指标的检测的基础上使用WB检测海马组织JNK、p-JNK以及内质网特异性蛋白Bip、pPERK的表达水平。结果发现: 高糖高脂饮食4周联合低剂量STZ一次性腹腔注射SD大鼠成功复制T2DM大鼠模型。与Control组相比, T2DM组大鼠出现认知功能障碍, 海马神经细胞凋亡、p-tau和Aβ水平增加。DHM能逆转T2DM大鼠上述指标改变, 但DHM对Control组大鼠上述指标无显著改变; TUDCA以及SP600125能改善T2DM大鼠认知功能障碍、减少T2DM大鼠海马神经细胞凋亡、p-tau和Aβ蛋白水平。使用ERS激活剂(TUN)以及JNK激活剂(AMY)后SD大鼠的认知功能明显下降, 海马神经细胞凋亡、p-tau和Aβ蛋白水平显著增加。综上, 我们得出结论: DHM可改善T2DM大鼠认知功能障碍, 其机制可能与其抑制JNK缓解ERS, 抑制海马神经细胞凋亡、p-tau和Aβ水平有关。
Supporting:
吕慧婕, 彭俊, 黄旭, 许拓, 张天成, 凌宏艳. DHM抑制海马JNK信号缓解内质网应激改善2型糖尿病大鼠认知功能障碍[J]. 中国药学(英文版), 2025, 34(11): 1003-1023.
Huijie Lv, Jun Peng, Xu Huang, Tuo Xu, Tianchen Zhang, Hongyan Ling. Dihydromyricetin reverses cognitive dysfunction in type 2 diabetic rats via inhibition of the JNK-ERS axis[J]. Journal of Chinese Pharmaceutical Sciences, 2025, 34(11): 1003-1023.
Figure 1. The MWM and Y-maze tests were used to examine changes in spatial learning and memory abilities in rats (x ± s, n = 8). (A) The representative swimming route of rats on the 1st day and the 5th day in the acquisition phase. (B) The escape periods of rats in 1−5 d in the acquisition phase. After completing the acquisition phase, the rats were subjected to the probe trial. The times of crossing the platform. (C) The proportionality of swimming time in the target quadrant (D) was analyzed. After completing the probe test, the rats were subjected to the visible platform test. The latency to visible platform (E) and the average swimming speed (F) were recorded. (G) Alternation behavior. (H) Number of arm entries. Values are the mean ± SEM, *P < 0.05, **P < 0.01, vs. control group. #P < 0.05, vs. T2DM group.
Figure 2. DHM decreases neuronal apoptosis in the hippocampus of T2DM rats (x ± s). H&E staining in hippocampal CA1 area (n = 3). The expression of Bax (B) and Bcl-2 (C) protein in rats (n = 5). Values are the mean ± SEM, *P < 0.01, **P < 0.001, vs. control group. #P < 0.05, ##P < 0.01, vs. T2DM group.
Figure 3. The expression of p-tau and Aβ protein in rats (x ± s, n = 5). (A) Aβ OD value; (B) p-tau OD value. Values are the mean ± SEM, *P < 0.0001, vs. control group. #P < 0.0001, vs. T2DM group.
Figure 4. The MWM and Y-maze tests were used to examine changes in spatial learning and memory abilities in rats (x ± s, n = 8). (A) The representative swimming route of rats on the 1st day and the 5th day in the acquisition phase. (B) The escape periods of rats in 1−5 d in the acquisition phase. After completing the acquisition phase, the rats were subjected to the probe trial. The times of crossing platform (C) and the proportionality of swimming time in the target quadrant (D) were analyzed. After finishing the probe test, rats were subjected to the visible platform test. The latency to visible platform (E) and the average swimming speed (F) were recorded. (G) Alternation behavior. (H) Number of arm entries. Values are the mean ± SEM, *P < 0.05, **P < 0.01, ***P < 0.001, vs. control group. #P < 0.05, ##P < 0.01, vs. T2DM group. &P < 0.05, &&P < 0.01, vs. T2DM + DHM group.
Figure 5. TUN can abolish the improvement effect of DHM on hippocampal neuronal apoptosis in T2DM rats (x ± s). (A) H&E staining in the hippocampal CA1 area (n = 3). The expression of Bax (B) and Bcl-2 (C) protein in rats (n = 5). Values are the mean ± SEM, *P < 0.01, **P < 0.001, vs. control group. #P < 0.01, ##P < 0.001, vs. T2DM group. &P < 0.05, vs. T2DM + DHM group.
Figure 6. The expression of p-tau and Aβ protein in rats (x ± s, n = 5). (A) Aβ OD value. (B) p-tau OD value. Values are the mean ± SEM, *P < 0.001, **P < 0.0001, vs. control group. #P < 0.0001, vs. T2DM group. &P < 0.05, &&P < 0.001, vs. T2DM + DHM group.
Figure 7. The MWM and Y-maze tests were used to examine changes in spatial learning and memory abilities in rats (x ± s, n = 8). (A) The representative swimming route of rats on the 1st d and 5th d in the acquisition phase. (B) The escape periods of rats in 1−5 d in the acquisition phase. After completing the acquisition phase, the rats were subjected to the probe trial. The times of crossing platform (C) and the proportionality of swimming time in the target quadrant (D) were analyzed. After completing the probe test, the rats were subjected to the visible platform test. The latency to visible platform (E) and the average swimming speed (F) were recorded. (G) Alternation behavior. (H) Number of arm entries. Values are the mean ± SEM, #P < 0.05, ##P < 0.01, vs. T2DM group. &P < 0.05, &&P < 0.01, vs. T2DM + DHM group.
Figure 8. AMY can abolish the improvement effect of DHM on hippocampal neuronal apoptosis in T2DM rats (x ± s, n = 5). (A) H&E staining in the hippocampal CA1 area (n = 3). The expression of Bax (B) and Bcl-2 (C) protein in rats (n = 5). Values are the mean ± SEM, *P < 0.01, **P < 0.001, vs. control group. #P < 0.01, ##P < 0.001, vs. T2DM group. &P < 0.05, &&P < 0.01, vs. T2DM + DHM group.
Figure 9. The expression of p-tau and Aβ protein in rats (x ± s, n = 5). (A) Aβ OD value. (B) p-tau OD value. Values are the mean ± SEM, *P < 0.001, **P < 0.0001, vs. control group. #P < 0.0001, vs. T2DM group. &P < 0.01, &&P < 0.0001, vs. T2DM + DHM group.
Figure 10. The expression of Bip and p-PERK protein in rats (x ± s, n = 5). (A) Bip protein expression. (B) p-PERK protein expression. Values are the mean ± SEM, *P < 0.01, **P < 0.0001, vs. control group. #P < 0.05, ##P < 0.001, vs. T2DM group. &P < 0.01, vs. T2DM + DHM group.
| [1] |
Majety, P.; Lozada Orquera, F.A.; Edem, D.; Hamdy, O. Pharmacological approaches to the prevention of type 2 diabetes mellitus. Endocrinol. Lausanne. 2023, 14, 1118848.
|
| [2] |
Gunawardena, H.; Silva, R.; Sivakanesan, R. Insulin resistance and dyslipidemia predicts the antioxidant status of individuals with type 2 diabetes mellitus. IDF World Diabetes Congress. 2019.
|
| [3] |
Hanson, A.J.; Rubinow, K.B. Optimizing clinical phenotyping to better delineate the complex relationship between type 2 diabetes and Alzheimer’s disease. Clin. Transl. Sci. 2021, 14, 1681–1688.
|
| [4] |
Wu, W.J.; Qiu, J.; Wang, A.L.; Li, Z.G. Impact of whole cereals and processing on type 2 diabetes mellitus: a review. Crit. Rev. Food Sci. Nutr. 2020, 60, 1447–1474.
|
| [5] |
Sun, Y.; Liu, S.S.; Yang, S.W.; Chen, C.; Yang, Y.T.; Lin, M.Y.; Liu, C.; Wang, W.M.; Zhou, X.D.; Ai, Q.D.; Wang, W.; Chen, N.H. Mechanism of dihydromyricetin on inflammatory diseases. Front. Pharmacol. 2022, 12, 794563.
|
| [6] |
Xie, J.B.; Zhang, T.T.; Li, P.C.; Wang, D.; Liu, T.; Xu, S.L. Dihydromyricetin attenuates cerebral ischemia reperfusion injury by inhibiting SPHK1/mTOR signaling and targeting ferroptosis. Drug Des. Devel. Ther. 2022, 16, 3071–3085.
|
| [7] |
Ding, H.R.; Cheng, Q.C.; Fang, X.; Wang, Z.Y.; Fang, J.Y.; Liu, H.C.; Zhang, J.W.; Chen, C.H.; Zhang, W.G. Dihydromyricetin alleviates ischemic brain injury by antagonizing pyroptosis in rats. Neurotherapeutics. 2023, 20, 1847–1858.
|
| [8] |
Wei, Y.C.; Hu, Y.H.; Qi, K.M.; Li, Y.; Chen, J.X.; Wang, R.G. Dihydromyricetin improves LPS-induced sickness and depressive-like behaviors in mice by inhibiting the TLR4/Akt/HIF1a/NLRP3 pathway. Behav. Brain Res. 2022, 423, 113775.
|
| [9] |
Guo, C.H.; Cao, T.; Zheng, L.T.; Waddington, J.L.; Zhen, X.C. Development and characterization of an inducible dicer conditional knockout mouse model of Parkinson’s disease: validation of the antiparkinsonian effects of a sigma-1 receptor agonist and dihydromyricetin. Acta Pharmacol. Sin. 2020, 41, 499–507.
|
| [10] |
Ren, Z.X.; Zhao, Y.F.; Cao,T. Dihydromyricetin protects neurons in MPTP-induced Parkinson disease via suppressing activity of glycogen synthase kinase-3 beta. Chin. J. Pharm. Toxicol. 2016, 30, 441–441.
|
| [11] |
Liu, M.M.; Guo, H.; Li, Z.Y.; Zhang, C.H.; Zhang, X.P.; Cui, Q.H.; Tian, J.Z. Molecular level insight into the benefit of myricetin and dihydromyricetin uptake in patients with Alzheimer’s diseases. Aging Neurosci. 2020, 12, 601603.
|
| [12] |
Lv, H.J.; Zhu, Z.M.; Chen, W.Z. Dihydromyricetin inhibits high glucose induced PC12 cells apoptosis by down-regulating JNK Pathway. Prog. Biochem. Biophys. 2018, 45, 663–671.
|
| [13] |
Kao, S.J.; Lee, W.J.; Chang, J.H.; Chow, J.M.; Chung, C.L.; Hung, W.Y.; Chien, M.H. Suppression of reactive oxygen species-mediated ERK and JNK activation sensitizes dihydromyricetin-induced mitochondrial apoptosis in human non-small cell lung cancer. Environ Toxicol. 2017, 32, 1426–1438.
|
| [14] |
Huang, Y.; You, S.M.; S hen, Y.B. Dihydromyricetin enhances the sensitivity of drug-resistant malignant melanoma cells to carboplatin via the SIRT1/JNK pathway. Chin. J. Modern Appl. Pharm. 2017, 34, 1689–1694.
|
| [15] |
Park, E.; Chun, H.S. Protective effects of quercetin on dieldrin-induced endoplasmic reticulum stress and apoptosis in dopaminergic neuronal cells. Neuroreport. 2016, 27, 1140–1146.
|
| [16] |
Tsai, J.J.; Kuo, H.C.; Lee, K.F.; Tsai, T.H. Glycyrrhizin represses total parenteral nutrition-associated acute liver injury in rats by suppressing endoplasmic reticulum stress. Int. J. Mol. Sci. 2013, 14, 12563–12580.
|
| [17] |
Takano, K.; Tabata, Y.; Kitao, Y.; Murakami, R.; Suzuki, H.; Yamada, M.; Iinuma, M.; Yoneda, Y.; Ogawa, S.; Hori, O. Methoxyflavones protect cells against endoplasmic reticulum stress and neurotoxin. Am. J. Physiol. Cell Physiol. 2007, 292, C353–C361.
|
| [18] |
Kwon, K.; Kwon, Y.S.; Kim, S.W.; Yu, K.; Lee, K.H.; Kwon, O.Y. Luteolin-induced apoptosis through activation of endoplasmic reticulum stress sensors in pheochromocytoma cells. Mol. Med. Rep. 2017, 16, 380–386.
|
| [19] |
Liu, H.; Hurile, B.; Xiong, Y.; Wei, C.X.; Xuan, L.Y.; Wang, Y.; Zhao, M. Effects of total flavonids of astragalus on arrhythmia, endoplasmic reticulum stress in mice with viral myocarditis. Chin. J. Appl. Physiol. 2018, 34, 16–18.
|
| [20] |
Quiñones, M.; Al-Massadi, O.; Folgueira, C.; Bremser, S.; Gallego, R.; Torres-Leal, L.; Haddad-Tóvolli, R.; García-Caceres, C.; Hernandez-Bautista, R.; Lam, B.Y.H.; Beiroa, D.; Sanchez-Rebordelo, E.; Senra, A.; Malagon, J.A.; Valerio, P.; Fondevila, M.F.; Fernø, J.; Malagon, M.M.; Contreras, R.; Pfluger, P.; Brüning, J.C.; Yeo, G.; Tschöp, M.; Diéguez, C.; López, M.; Claret, M.; Kloppenburg, P.; Sabio, G.; Nogueiras, R. p53 in AgRP neurons is required for protection against diet-induced obesity via JNK1. Nat. Commun. 2018, 9, 3432.
|
| [21] |
Chung, Y.; Lee, H. Correlation between Alzheimer’s disease and type 2 diabetes using non-negative matrix factorization. Sci. Rep. 2021, 11, 15265.
|
| [22] |
Cukierman, T.; Gerstein, H.C.; Williamson, J.D. Cognitive decline and dementia in diabetes: systematic overview of prospective observational studies. Diabetologia. 2005, 48, 2460–2469.
|
| [23] |
Cheng, G.; Huang, C.; Deng, H.; Wang, H. Diabetes as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies. Intern. Med. J. 2012, 42, 484–491.
|
| [24] |
Liu, Z.C.; Fu, Z.Q.; Song, J.; Zhang, J.Y.; Wei, Y.P.; Chu, J.; Han, L.; Qu, N.; Wang, J.Z.; Tian, Q. Bip enhanced the association of GSK-3β with tau during ER stress both in vivo and in vitro. J. Alzheimers Dis. 2012, 29, 727–740.
|
| [25] |
Resende, R.; Ferreiro, E.; Pereira, C.; Oliveira, C.R. ER stress is involved in Aβ-induced GSK-3β activation and tau phosphorylation. J. Neurosci. Res. 2008, 86, 2091–2099.
|
| [26] |
Buccarello, L.; Sclip, A.; Sacchi, M.; Castaldo, A.M.; Bertani, I.; ReCecconi, A.; Maestroni, S.; Zerbini, G.; Nucci, P.; Borsello, T. The c-Jun N-terminal kinase plays a key role in ocular degenerative changes in a mouse model of Alzheimer disease suggesting a correlation between ocular and brain pathologies. Oncotarget. 2017, 8, 83038–83051.
|
| [27] |
Bitel, C.L.; Kasinathan, C.; Kaswala, R.H.; Klein, W.L.; Frederikse, P.H. Amyloid-β and tau pathology of Alzheimer’s disease induced by diabetes in a rabbit animal model. J. Alzheimers Dis. 2012, 32, 291–305.
|
| [28] |
Kim, B.; Backus, C.; Oh, S.; Feldman, E.L. Hyperglycemia-induced tau cleavage in vitro and in vivo: a possible link between diabetes and Alzheimer’s disease. J. Alzheimers Dis. 2013, 34, 727–739.
|
| [29] |
Jakobsen, J.; Sidenius, P.; Gundersen, H.J.G.; Østerby, R. Quantitative changes of cerebral neocortical structure in insulin-treated long-term streptozocin-induced diabetes in rats. Diabetes. 1987, 36, 597–601.
|
| [30] |
Garris, D.R.; Diani, A.R.; Smith, C.; Gerritsen, G.C. Depopulation of the ventromedial hypothalamic nucleus in the diabetic Chinese hamster. Acta Neuropathol. 1982, 56, 63–66.
|
| [31] |
Liang, J.Y.; Guo, F.; Cao, S.F.; Zhao, K.; Zhao, K.X.; Wang, H.F.; Shao, X.F.; Wei, Y.Y.; Zhang, C.D.; Zheng, Y.H.; Xu, F. γ-Aminobutyric acid (GABA) alleviated oxidative damage and programmed cell death in fresh-cut pumpkins. Plant Physiol. Biochem. 2022, 180, 9–16.
|
| [32] |
Anarkooli, I.J.; Ganji, H.B.; Pourheidar, M. The protective effects of insulin and natural honey against hippocampal cell death in streptozotocin-induced diabetic rats. J. Diabetes Res. 2014, 2014, 491571.
|
| [33] |
Xu, H.; Li, H.; Liu, D.X.; Wen, W.; Xu, M.; Frank, J.A.; Chen, J.; Zhu, H.N.; Grahame, N.J.; Luo, J. Chronic voluntary alcohol drinking causes anxiety-like behavior, thiamine deficiency, and brain damage of female crossed high alcohol preferring mice. Pharmacol. 2021, 12, 614396.
|
| [34] |
Mao, X.; Meng, J.; Mao, J. Zhang, H.L. Effects of acupuncture on endoplasmic reticulum stress and apoptosis in CA1 region of hippocampus of rats with Alzheimer’s disease. J. Hainan Med. Coll. 2019, 25, 1209–1214.
|
| [35] |
Montibeller, L.; de Belleroche, J. Amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD) are characterised by differential activation of ER stress pathways: focus on UPR target genes. Cell Stress. Chaperones. 2018, 23, 897–912.
|
| [36] |
Stutzbach, L.; Hawk, M.; Gilman, S.; Lee, V.; Trojanowski, J.; Schellenberg, G. ER stress in Alzheimer’s disease and PSP: common disease mechanism? Alzheimers. Dement. 2012, 8, 460–461.
|
| [37] |
Zhu, W.; Zhao, L.; Li, T.; Xu, H.; Ding, Y.X.; Cui, G.Q. Docosahexaenoic acid ameliorates traumatic brain injury involving JNK-mediated Tau phosphorylation signaling. Neurosci. Res. 2020, 157, 44–50.
|
| [38] |
Zhang, H.; Zhang, L.; Zhou, D.M.; Li, H.F.; Xu, Y. ErbB4 mediates amyloid β-induced neurotoxicity through JNK/tau pathway activation: Implications for Alzheimer’s disease. J. Comp. Neurol. 2021, 529, 3497–3512.
|
| [39] |
Orejana, L.; Barros-Miñones, L.; Aguirre, N.; Puerta, E. Implication of JNK pathway on tau pathology and cognitive decline in a senescence-accelerated mouse model. Exp. Gerontol. 2013, 48, 565–571.
|
| [40] |
Sun, X.Y.; Dong, Q.X.; Zhu, J.; Sun, X.; Zhang, L.F.; Qiu, M.; Yu, X.L.; Liu, R.T. Resveratrol rescues tau-induced cognitive deficits and neuropathology in a mouse model of tauopathy. Curr. Alzheimer Res. 2019, 16, 710–722.
|
| [41] |
Wu, T.T.; Chai, L.M.; Yang,Y.X. Action mechanism of Bushen Yifei Xiaozheng Recipe on regulation of endoplasmic reticulum stress by intervening expression of key molecules of JNK apoptosis signaling pathway in pulmonary fibrosis rats. J. Mod. Integr. Med. 2016, 25, 2053–2056.
|
| [42] |
Wu, Y.; Yuan, Y.; Wu, C.B.; Jiang, T.; Wang, B.N.; Xiong, J.; Zheng, P.P.; Li, Y.Y.; Xu, J.Y.; Xu, K.; Liu, Y.Q.; Li, X.K.; Xiao, J. Corrigendum: the reciprocal causation of the ASK1-JNK1/2 pathway and endoplasmic reticulum stress in diabetes-induced cognitive decline. Front. Cell Dev. Biol. 2021, 9, 639486.
|
| [43] |
Luchsinger, J.A. Type 2 diabetes, related conditions, in relation and dementia: an opportunity for prevention? J. Alzheimers Dis. 2010, 20, 723–736.
|
| [44] |
Ryan, C.M.; Freed, M.I.; Rood, J.A.; Cobitz, A.R.; Waterhouse, B.R.; Strachan, M.W. Improving metabolic control leads to better working memory in adults with type 2 diabetes. Diabetes Care. 2006, 29, 345–351.
|
| [45] |
Lin, B.; Zhang, Z.L.; Yu, L.Y.; Guo, L.H. CMV-hFasL transgenic mice are sensitive to low doses of streptozotocin-induced type I diabetes mellitus. Acta Pharmacol. Sin. 2004, 24, 1199–1204
|
| [46] |
Ajebli, M.; Khan, H.; Eddouks, M. Natural alkaloids and diabetes mellitus: a review. Endocr. Metab. Immune. Disord Drug Targets. 2021, 21, 111–130.
|
| [47] |
Feng, J.J.; Zheng, J.G.; Liu, J.L. Pathogenesis of mild cognitive impairment on Chinese medicine and Western medicine: review. J. Changchun Univ. Tradit. Chin. Med. 2014, 30, 1166–1169.
|
| [48] |
Huang, K.; Huang, R.; Zuo, X.T.; Ruan, Z.Z. Overview of the treatment of obesity type 2 diabetes with external treatment of traditional Chinese medicine. Tradit. Chin. Med. 2021, 10, 188–192.
|
| [49] |
Meng, J.N.; Zhu, Y.F.; Ma, H.X.; Wang, X.B.; Zhao, Q.P. The role of traditional Chinese medicine in the treatment of cognitive dysfunction in type 2 diabetes. J. Ethnopharmacol. 2021, 280, 114464.
|
| [50] |
Lin, J.T.; Liu, J.H.; Liu, X.H. Effect of compound Danshen Dropping Pills on cognitive function in diabetic patients with coronary heart disease. China J. New Drugs. 2009, 13, 43–46.
|
| [51] |
Yuan, M.X.; He, Q.; Long, Z.Y.; Zhu, X.F.; Xiang, W.; Wu, Y.H.; Lin, S.B. Exploring the pharmacological mechanism of Liuwei Dihuang decoction for diabetic retinopathy: a systematic biological strategy-based research. Evid. Based Complement. Altern. Med. 2021, 2021, 5544518.
|
| [52] |
Liu, J.P.; Feng, L.; Zhang, M.H.; Ma, D.Y.; Wang, S.Y.; Gu, J.; Fu, Q.; Qu, R.; Ma, S.P. Neuroprotective effect of Liuwei Dihuang decoction on cognition deficits of diabetic encephalopathy in streptozotocin-induced diabetic rat. J. Ethnopharmacol. 2013, 150, 371–381.
|
| [53] |
Wu, J.Z.; Ardah, M.; Haikal, C.; Svanbergsson, A.; Diepenbroek, M.; Vaikath, N.N.; Li, W.; Wang, Z.Y.; Outeiro, T.F.; El-Agnaf, O.M.; Li, J.Y. Dihydromyricetin and Salvianolic acid B inhibit alpha-synuclein aggregation and enhance chaperone-mediated autophagy. Transl. Neurodegener. 2019, 8, 18.
|
| [54] |
Ren, Z.X.; Zhao, Y.F.; Cao, T.; Zhen, X.C. Dihydromyricetin protects neurons in an MPTP-induced model of Parkinson’s disease by suppressing glycogen synthase kinase-3 beta activity. Acta Pharmacol. Sin. 2016, 37, 1315–1324.
|
| [1] | 王莹, 于欢, 闫婷婷, 潘文斐. 恩格列净在2型糖尿病合并心衰患者中的疗效及安全性研究[J]. 中国药学(英文版), 2025, 34(11): 1024-1032. |
| [2] | 冯璐, 黄薇, 郑吉, 李冬梅, 王明洋, 刘俊雅, 范姝婕, 纪超, 杨楠, 刘雁勇. 乌灵菌粉通过减弱小鼠海马内质网应激缓解抑郁样行为[J]. 中国药学(英文版), 2024, 33(9): 783-794. |
| [3] | 彭雅萍, 付颖. 胰高血糖素样肽-1受体激动剂治疗2型糖尿病的新进展[J]. 中国药学(英文版), 2024, 33(8): 667-685. |
| [4] | 张晓明, 朱世慧, 高艺文, 李建橡, 张楠, 岳桂华. 黄连解毒汤对自发性高血压大鼠心脏内质网应激的影响[J]. 中国药学(英文版), 2024, 33(7): 609-619. |
| [5] | 吕慧婕, 许拓, 彭俊, 罗刚, 何剑琴, 杨丝丝, 张天成, 奉水东, 凌宏艳. 氢杨梅素改善高脂饮食诱导的肥胖小鼠肝脏脂肪沉积及机制[J]. 中国药学(英文版), 2022, 31(11): 824-839. |
| [6] | 李睿, 孔燕茹. 利格列汀对初诊2型糖尿病患者炎症因子和动脉硬化的影响[J]. 中国药学(英文版), 2021, 30(8): 692-698. |
| [7] | 姚烨, 酒向飞, 王思媛, 卢炜, 周田彦. 西他列汀影响糖尿病大鼠中二肽基肽酶活性、胰岛素和血糖水平的基于机制的药物动力学/药效动力学模型研究[J]. 中国药学(英文版), 2018, 27(6): 371-382. |
| [8] | 管晓东, 马莉莉, 王国英, 海沙尔江·吾守尔, 满春霞, 韩晟, 史录文. 中国2型糖尿病患者胰岛素注射笔用针头重复使用的影响因素研究[J]. 中国药学(英文版), 2018, 27(1): 51-58. |
| [9] | 胡琴, 唐惠林, 邵宏. 基于肠促胰素药物治疗2型糖尿病合并非酒精性肝病的疗效和安全性的系统评价和meta分析[J]. 中国药学(英文版), 2016, 25(3): 206-214. |
| [10] | 姚莉, 范芳芳, 胡兰, 赵生俊, 郑丽丽. 沙格列汀治疗成人2型糖尿病的有效性和安全性: 基于随机对照试验的meta分析[J]. 中国药学(英文版), 2016, 25(2): 128-139. |
| [11] | 谢晓慧, 王菲, 崔家玉. 糖尿病管理中的肥胖问题及其干预[J]. 中国药学(英文版), 2015, 24(6): 412-418. |
| [12] | 张岩松, 张庆英, 王邠, 李丽英, 赵玉英*. 显齿蛇葡萄化学成分研究[J]. , 2006, 15(4): 211-214. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||