中国药学(英文版) ›› 2024, Vol. 33 ›› Issue (5): 412-429.DOI: 10.5246/jcps.2024.05.031
李哲1,#, 肖燕琳1,#, 朱琳2, 刘文君3, 杨凌宇3, 金正吉1, Abid Naeem1, 朱卫丰1, 冯怡1,4, 明良山1,*()
收稿日期:
2023-11-05
修回日期:
2023-12-10
接受日期:
2024-01-12
出版日期:
2024-05-31
发布日期:
2024-05-31
通讯作者:
明良山
Zhe Li1,#, Yanlin Xiao1,#, Lin Zhu2, Wenjun Liu3, Lingyu Yang3, Zhengji Jin1, Abid Naeem1, Weifeng Zhu1, Yi Feng1,4, Liangshan Ming1,*()
Received:
2023-11-05
Revised:
2023-12-10
Accepted:
2024-01-12
Online:
2024-05-31
Published:
2024-05-31
Contact:
Liangshan Ming
About author:
# Zhe Li and Yanlin Xiao contributed equally to this work.
Supported by:
摘要:
采用中心复合设计优化了影响多孔型核壳复合颗粒(PCPs)直接压片(DC)性能的配方参数。分别以PVP和NH4HCO3作为壳层材料和制孔剂, 选择共喷雾干燥为制备工艺。以PCPs的产率、流动性、压缩性和崩解时间作为响应值。结果表明, NH4HCO3和PVP K30的最佳配比分别为4.76%和9.42%。产率、流动性、压缩性和崩解时间的测定值分别为62.00%、38.50°、4.02 MPa和14.33 min。预测误差分别为2.99%、1.09%、5.70%和2.28%。在本研究中, 最优的PCPs与四种DC辅料混合用于连续DC。结果表明, 优化后的PCPs具有优良的直压性能和适用性, 为其他中药制备PCPs及实现DC提供思路和理论支持。
Supporting:
李哲, 肖燕琳, 朱琳, 刘文君, 杨凌宇, 金正吉, Abid Naeem, 朱卫丰, 冯怡, 明良山. 基于直接压片的多孔核壳粒子优化和应用[J]. 中国药学(英文版), 2024, 33(5): 412-429.
Zhe Li, Yanlin Xiao, Lin Zhu, Wenjun Liu, Lingyu Yang, Zhengji Jin, Abid Naeem, Weifeng Zhu, Yi Feng, Liangshan Ming. Optimization and application of porous core-shell particles for direct compaction[J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(5): 412-429.
Figure 2. Summary of Y1–Y4 fitting curves. (a) Fitting curve of yield of the composite particles; (b) Fitting curve of AR of the composite particles; (c) Fitting curve of TS of the composite particles; (d) Fitting curve of DT of the composite particles.
Figure 9. (a) The tensile strength profiles for XEXS and Cellactose with different drug loading (Mean ± SD, n = 3); (b) The tensile strength profiles for XEXS and MCC with different drug loading (Mean ± SD, n = 3).
Figure 10. The tensile strength profiles for XEXS with different drug loading (Mean ± SD, n = 3). (a), 3 KN; (b), 6 KN; (c), 9 KN; (d), 12 KN; TS, tensile strength; XEXS, PCPs-X-P-NH4; CL80, Cellactose 80; MCC; microcrystalline cellulose.
[1] |
Hansen, J.; Kleinebudde, P. Enabling the direct compression of metformin hydrochloride through QESD crystallization. Int. J. Pharm. 2021, 605, 120796.
|
[2] |
Van Snick, B.; Holman, J.; Cunningham, C.; Kumar, A.; Vercruysse, J.; De Beer, T.; Remon, J.P.; Vervaet, C. Continuous direct compression as manufacturing platform for sustained release tablets. Int. J. Pharm. 2017, 519, 390–407.
|
[3] |
Lyytikäinen, J.; Stasiak, P.; Kubelka, T.; Olenius, T.; Korhonen, O.; Ketolainen, J.; Ervasti, T. Parameter optimization in a continuous direct compression process of commercially batch-produced bisoprolol tablets. Int. J. Pharm. 2022, 628, 122355.
|
[4] |
Zhao, H.Y.; Zhao, L.J.; Lin, X.; Shen, L. An update on microcrystalline cellulose in direct compression: functionality, critical material attributes, and co-processed excipients. Carbohydr. Polym. 2022, 278, 118968.
|
[5] |
Kamyar, R.; Lauri Pla, D.; Husain, A.; Cogoni, G.; Wang, Z.L. Soft sensor for real-time estimation of tablet potency in continuous direct compression manufacturing operation. Int. J. Pharm. 2021, 602, 120624.
|
[6] |
Mura, P.; Valleri, M.; Baldanzi, S.; Mennini, N. Characterization and evaluation of the performance of different calcium and magnesium salts as excipients for direct compression. Int. J. Pharm. 2019, 567, 118454.
|
[7] |
Shah, U.V.; Karde, V.; Ghoroi, C.; Heng, J.Y.Y. Influence of particle properties on powder bulk behaviour and processability. Int. J. Pharm. 2017, 518, 138–154.
|
[8] |
Li, Z.; Xian, J.C.; Wu, F.; Lin, X.; Shen, L.; Feng, Y. Development of TCM-based composite particles for direct compaction by particle design. Powder Technol. 2018, 338, 481–492.
|
[9] |
Dhondt, J.; Bertels, J.; Kumar, A.; Van Hauwermeiren, D.; Ryckaert, A.; Van Snick, B.; Klingeleers, D.; Vervaet, C.; De Beer, T. A multivariate formulation and process development platform for direct compression. Int. J. Pharm. 2022, 623, 121962.
|
[10] |
Li, Z.; Zhou, M.M.; Wu, F.; Shen, L.; Lin, X.A.; Feng, Y. Direct compaction properties of Zingiberis Rhizoma extracted powders coated with various shell materials: improvements and mechanism analysis. Int. J. Pharm. 2019, 564, 10–21.
|
[11] |
Chen, H.B.; Wang, C.G.; Kang, H.; Zhi, B.; Haynes, C.L.; Aburub, A.; Sun, C.C. Microstructures and pharmaceutical properties of ferulic acid agglomerates prepared by different spherical crystallization methods. Int. J. Pharm. 2020, 574, 118914.
|
[12] |
Marasini, N.; Sheikh, Z.; Wong, C.Y.J.; Hosseini, M.; Spicer, P.T.; Young, P.; Ong, H.X.; Traini, D. Development of excipients free inhalable co-spray-dried tobramycin and diclofenac formulations for cystic fibrosis using two and three fluid nozzles. Int. J. Pharm. 2022, 624, 121989.
|
[13] |
McDonagh, A.F.; Duff, B.; Brennan, L.; Tajber, L. The impact of the degree of intimate mixing on the compaction properties of materials produced by crystallo-co-spray drying. Eur. J. Pharm. Sci. 2020, 154, 105505.
|
[14] |
Li, Z.; Lin, X.; Shen, L.; Hong, Y.L.; Feng, Y. Composite particles based on particle engineering for direct compaction. Int. J. Pharm. 2017, 519, 272–286.
|
[15] |
Matos, R.L.; Lu, T.J.; Prosapio, V.; McConville, C.; Leeke, G.; Ingram, A. Coprecipitation of curcumin/PVP with enhanced dissolution properties by the supercritical antisolvent process. J. CO2 Util. 2019, 30, 48–62.
|
[16] |
Wang, C.; Liu, D.Y.; Ma, J.L.; Liang, C.; Chen, X.P. Characterization of coating shells in a Wurster fluidized bed under different drying conditions and solution viscosities. Powder Technol. 2022, 411, 117914.
|
[17] |
Sheng, F.; Chow, P.S.; Hu, J.; Cheng, S.Y.; Guo, L.F.; Dong, Y.C. Preparation of quercetin nanorod/microcrystalline cellulose formulation via fluid bed coating crystallization for dissolution enhancement. Int. J. Pharm. 2020, 576, 118983.
|
[18] |
Siow, C.R.S.; Tang, D.S.; Heng, P.W.S.; Chan, L.W. Probing the impact of HPMC viscosity grade and proportion on the physical properties of co-freeze-dried mannitol-HPMC tableting excipients using multivariate analysis methods. Int. J. Pharm. 2019, 556, 246–262.
|
[19] |
Zhang, J.; Liu, M.Z.; Zeng, Z.H. The antisolvent coprecipitation method for enhanced bioavailability of poorly water-soluble drugs. Int. J. Pharm. 2022, 626, 122043.
|
[20] |
Kolář, J.; Kovačík, P.; Choděrová, T.; Grof, Z.; Štěpánek, F. Optimization of Wurster fluid bed coating: mathematical model validated against pharmaceutical production data. Powder Technol. 2021, 386, 505–518.
|
[21] |
Abla, K.K.; Mehanna, M.M. Freeze-drying: a flourishing strategy to fabricate stable pharmaceutical and biological products. Int. J. Pharm. 2022, 628, 122233.
|
[22] |
Davis, M.T.; Potter, C.B.; Walker, G.M. Downstream processing of a ternary amorphous solid dispersion: the impacts of spray drying and hot melt extrusion on powder flow, compression and dissolution. Int. J. Pharm. 2018, 544, 242–253.
|
[23] |
Bazaria, B.; Kumar, P. Optimization of spray drying parameters for beetroot juice powder using response surface methodology (RSM). J. Saudi Soc. Agric. Sci. 2018, 17, 408–415.
|
[24] |
Tontul, I.; Topuz, A. Spray-drying of fruit and vegetable juices: effect of drying conditions on the product yield and physical properties. Trends Food Sci. Technol. 2017, 63, 91–102.
|
[25] |
Nimbkar, S.; Leena, M.M.; Moses, J.A.; Anandharamakrishnan, C. Development of iron-vitamin multilayer encapsulates using 3 fluid nozzle spray drying. Food Chem. 2023, 406, 135035.
|
[26] |
Funk, N.L.; Fantaus, S.; Beck, R.C.R. Immediate release 3D printed oral dosage forms: how different polymers have been explored to reach suitable drug release behaviour. Int. J. Pharm. 2022, 625, 122066.
|
[27] |
Wazalwar, R.; Tripathi, N.; Raichur, A.M. Mechanical and curing behavior of epoxy composites reinforced with polystyrene-graphene oxide (PS-GO) core-shell particles. Compos. C. 2021, 5, 100128.
|
[28] |
Li, J.Z.; Li, Z.; Ruan, H.S.; Gao, Y.T.; Hong, Y.L.; Shen, L.; Lin, X.A. Improved direct compression properties of Gardeniae fructus water extract powders via fluid bed-mediated surface engineering. Pharm. Dev. Technol. 2022, 27, 725–739.
|
[29] |
Wang, H.N.; Tian, W.N.; Li, Y.; Yuan, Y.; Lv, M.W.; Cao, Y.; Xiao, J. Intervention effects of multilayer core-shell particles on colitis amelioration mechanisms of capsaicin. J. Control. Release. 2022, 351, 324–340.
|
[30] |
Zhu, W.F.; Zhu, L.; Li, Z.; Wu, W.T.; Guan, Y.M.; Chen, L.H.; Mao, Z.X.; Ming, L.S. The novel use of PVP K30 as templating agent in production of porous lactose. Pharmaceutics. 2021, 13, 814.
|
[31] |
Deng, K.M.; Zhang, X.Y.; Yuan, B.; Deng, Z.W.; Liu, X.; Shang, B. Porous structure with stable superhydrophobic surface for high-performance atmospheric fog harvesting. J. Environ. Chem. Eng. 2022, 10, 108771.
|
[32] |
Dai, S.Y.; Xu, B.; Zhang, Z.Q.; Yu, J.Q.; Wang, F.; Shi, X.Y.; Qiao, Y.J. A compression behavior classification system of pharmaceutical powders for accelerating direct compression tablet formulation design. Int. J. Pharm. 2019, 572, 118742.
|
[33] |
González, K.; Larraza, I.; Berra, G.; Eceiza, A.; Gabilondo, N. 3D printing of customized all-starch tablets with combined release kinetics. Int. J. Pharm. 2022, 622, 121872.
|
[34] |
Ghosh Dastidar, D.; Saha, S.; Chowdhury, M. Porous microspheres: synthesis, characterisation and applications in pharmaceutical & medical fields. Int. J. Pharm. 2018, 548, 34–48.
|
[35] |
Craparo, E.F.; Cabibbo, M.; Emanuele Drago, S.; Casula, L.; Lai, F.; Cavallaro, G. Inhalable polymeric microparticles as pharmaceutical porous powder for drug administration. Int. J. Pharm. 2022, 628, 122325.
|
[36] |
Liao, Q.Y.; Yip, L.; Chow, M.Y.T.; Chow, S.F.; Chan, H.K.; Kwok, P.C.L.; Lam, J.K.W. Porous and highly dispersible voriconazole dry powders produced by spray freeze drying for pulmonary delivery with efficient lung deposition. Int. J. Pharm. 2019, 560, 144–154.
|
[37] |
Li, Z.; Zhu, L.; Chen, F.C.; Guan, Y.M.; Chen, L.H.; Zhang, J.W.; Mao, Z.X.; Ming, L.S.; Zhu, W.F. The preparation, characterization, and application of porous core–shell composite particles produced with laboratory-scale spray dryer. Drug Dev. Ind. Pharm. 2023, 49, 217–231.
|
[38] |
Vickovic, D.; Czaja, T.P.; Gaiani, C.; Pedersen, S.J.; Ahrné, L.; Hougaard, A.B. The effect of feed formulation on surface composition of powders and wall deposition during spray drying of acidified dairy products. Powder Technol. 2023, 418, 118297.
|
[39] |
Francia, V.; Martín, L.; Bayly, A.E.; Simmons, M.J.H. Agglomeration during spray drying: airborne clusters or breakage at the walls? Chem. Eng. Sci. 2017, 162, 284–299.
|
[40] |
Siow, C.R.S.; Heng, P.W.S.; Chan, L.W. A study on the impact of HPMC viscosity grade and proportion on the functional properties of co-freeze-dried mannitol-HPMC cushioning excipients for compacted MUPS. Eur. J. Pharm. Biopharm. 2020, 151, 98–107.
|
[41] |
Foppoli, A.; Maroni, A.; Palugan, L.; Zema, L.; Moutaharrik, S.; Melocchi, A.; Cerea, M.; Gazzaniga, A. Erodible coatings based on HPMC and cellulase for oral time-controlled release of drugs. Int. J. Pharm. 2020, 585, 119425.
|
[42] |
Chen, L.; Tang, Y.F.; Zhao, K.; Zha, X.; Liu, J.X.; Bai, H.; Wu, Z.X. Fabrication of the antibiotic-releasing gelatin/PMMA bone cement. Colloids Surf. B 2019, 183, 110448.
|
[43] |
Mokeem, L.S.; Garcia, I.M.; Shahkarami, Y.; Blum, L.; Balhaddad, A.A.; Collares, F.M.; Williams, M.A.; Weir, M.D.; Melo, M.A.S. Core-shell nanostructures for improving dental restorative materials: a scoping review of composition, methods, and outcome. Smart Mater. Med. 2023, 4, 102–110.
|
[44] |
Peng, Q.H.; Cong, H.L.; Yu, B.; Wei, L.; Mahmood, K.; Yuan, H.; Yang, R.X.; Zhang, X.Y.; Wu, Y. Preparation of polymeric Janus microparticles with hierarchically porous structure and enhanced anisotropy. J. Colloid Interface Sci. 2018, 522, 144–150.
|
[45] |
Xiao, P.F.; Qi, P.; Chen, J.; Song, Z.L.; Wang, Y.D.; He, H.B.; Tang, X.; Wang, P.X. The effect of polymer blends on initial release regulation and in vitro-in vivo relationship of peptides loaded PLGA-Hydrogel Microspheres. Int. J. Pharm. 2020, 591, 119964.
|
[46] |
Chaerunisaa, A.Y.; Ali, R.; Körber, M.; Bodmeier, R. Quantification of porogen effect on the drug release from single- and multi-layered ethylcellulose coated pellets containing single or combined drugs. Int. J. Pharm. 2020, 577, 119050.
|
[47] |
Yohannes, B.; Abebe, A. Determination of tensile strength of shaped tablets. Powder Technol. 2021, 383, 11–18.
|
[48] |
Al-Shdefat, R.; Anwer, M.K.; Fayed, M.H.; Alsulays, B.B.; Tawfeek, H.M.; Abdel-Rahman, R.F.; Soliman, G.A. Preparation and evaluation of spray dried rosuvastatin calcium-PVP microparticles for the improvement of serum lipid profile. J. Drug Deliv. Sci. Technol. 2020, 55, 101342.
|
[49] |
Ziffels, S.; Steckel, H. Influence of amorphous content on compaction behaviour of anhydrous α-lactose. Int. J. Pharm. 2010, 387, 71–78.
|
[50] |
Zhao, H.Y.; Shi, C.T.; Zhao, L.J.; Wang, Y.J.; Shen, L. Influences of different microcrystalline cellulose (MCC) grades on tablet quality and compression behavior of MCC-lactose binary mixtures. J. Drug Deliv. Sci. Technol. 2022, 77, 103893.
|
[51] |
Zhang, R.H.; Pang, X.Y.; Lu, J.; Liu, L.; Zhang, S.W.; Lv, J.P. Effect of high intensity ultrasound pretreatment on functional and structural properties of micellar casein concentrates. Ultrason. Sonochem. 2018, 47, 10–16.
|
[52] |
Ross, M.M.; Crowley, S.V.; Kelly, A.L. Applications of micellar casein concentrate in 3D-printed food structures. Innov. Food Sci. Emerg. Technol. 2022, 82, 103182.
|
[53] |
Prikeržnik, M.; Srčič, S. Multivariate analysis for optimization and validation of the industrial tablet-manufacturing process. Drug Dev. Ind. Pharm. 2021, 47, 61–71.
|
[1] | 杨杰, 景彩芳, 李少创, 刘思彤, 李董明, 李钦青, 贺文彬. 复方党参颗粒制备工艺优化及4种成分的同时测定[J]. 中国药学(英文版), 2023, 32(8): 665-676. |
[2] | 宋书香. 贾彦兴团队实现了天然产物蓝萼甲素的首次全合成[J]. 中国药学(英文版), 2020, 29(6): 439-440. |
[3] | 孙玉芳, 郑晨, 徐波. Moflo XDP高速细胞分选技巧与参数优化研究[J]. 中国药学(英文版), 2020, 29(5): 355-363. |
[4] | 天然药物及仿生药物国家重点实验室. 焦宁教授团队在小分子活化领域取得新进展[J]. 中国药学(英文版), 2019, 28(6): 447-448. |
[5] | 北京大学药学院. 贾彦兴教授团队在复杂天然产物全合成领域连续取得突破性进展[J]. 中国药学(英文版), 2019, 28(4): 284-286. |
[6] | 宋书香. 关于2018-2020年天然药物及仿生药物国家重点实验室大型技术平台建设的回顾与思考[J]. 中国药学(英文版), 2019, 28(12): 878-884. |
[7] | 张弨, 谢若函, 王楚慧, 袭辰辰, 戈梦佳. 基于群体药动学和药效学的仿真对肾功能不全病人使用哌拉西林/他唑巴坦进行剂量优化[J]. 中国药学(英文版), 2018, 27(12): 824-831. |
[8] | 庞朝海, 方功, 王定勇. 响应面优化超声辅助提取独子藤中雷公藤红素[J]. 中国药学(英文版), 2017, 26(2): 130-138. |
[9] | 侯凤琴, 孙新婷, 王贵强*. 教学医院不合理应用抗菌药物治疗成人急性感染性腹泻调查[J]. , 2010, 19(3): 229-234. |
[10] | 吴宝剑, 魏秀莉, 卢懿, 吴伟* . 效应面法优化吲哚美辛自HPMC/果胶/氯化钙骨架片的双相释放 [J]. , 2008, 17(4): 285-290. |
[11] | 刘艾林, 李铭源, 王一涛, 杜冠华*. 香薷属植物的传统应用, 化学与药理学研究进展[J]. , 2007, 16(2): 73-78. |
[12] | 李凤前*, 胡晋红, 陆彬, 朱全刚, 孙华君. 环丙沙星白蛋白微球的制备及体外释药特性[J]. , 2001, 10(1): 24-28. |
[13] | 徐成斌, 胡大一, 康丽萍, 田雅文, 高明明, 顼志敏, 靳三友, 马凤云, 马敏, 石湘芸, 张宝和, 龙南展, 李琳, 薛林, 张钧华, 陈秀丽, 戴呈祥. 小剂量血脂康和普伐他汀长期调脂作用的比较[J]. , 2000, 9(4): 218-221. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||