中国药学(英文版) ›› 2022, Vol. 31 ›› Issue (6): 429-440.DOI: 10.5246/jcps.2022.06.037
收稿日期:
2022-01-27
修回日期:
2022-03-15
接受日期:
2022-03-26
出版日期:
2022-06-30
发布日期:
2022-06-30
通讯作者:
安春娜
作者简介:
基金资助:
Hongning Zhang1, Shuying Han2, Xiaoping Pu3, Chunna An2,*()
Received:
2022-01-27
Revised:
2022-03-15
Accepted:
2022-03-26
Online:
2022-06-30
Published:
2022-06-30
Contact:
Chunna An
摘要:
我们研究了来自丹参的3,4-二羟基苯甲醛对体外小鼠精子存活和精子细胞膜完整性的影响, 以及对环磷酰胺在体内诱导的小鼠生殖损伤的影响。3,4-二羟基苯甲醛(0.01, 0.1和1 mg/mL)可提高分离的小鼠精子存活率和精子细胞膜完整性(均P < 0.05)。在环磷酰胺处理的雄性小鼠(腹腔注射60 mg/kg/d, 共5天)中, 3,4-二羟基苯甲醛(灌胃40 mg/kg/d, 共35天)增加睾丸指数、附睾指数和精子核成熟度(均P < 0.05)。3,4-二羟基苯甲醛还改善了睾丸形态, 其特征是生精细胞层排列有序, 腔内精子数量增多, 间质细胞正常, 生精小管排列紧密。3,4-二羟基苯甲醛还增加了睾丸超氧化物歧化酶(SOD)活性并提高了DJ-1表达。此外, 它还降低了ICAM-1的表达并增加了VCAM-1、PEDF、VEGF和PPARγ的表达。这些结果表明, 3,4-二羟基苯甲醛在体外可增加小鼠精子存活率和精子细胞膜完整性, 并在体内通过DJ-1和其他靶点减少环磷酰胺对小鼠睾丸的损伤。因此, 3,4-二羟基苯甲醛可用于治疗男性生殖损伤和抗肿瘤药环磷酰胺引起的生殖毒性。
Supporting:
张宏宁, 韩淑英, 蒲小平, 安春娜. 天然植物来源的3,4-二羟基苯甲醛改善雄性小鼠生殖损伤的作用[J]. 中国药学(英文版), 2022, 31(6): 429-440.
Hongning Zhang, Shuying Han, Xiaoping Pu, Chunna An. Natural plant-derived 3,4-dihydroxybenzaldehyde ameliorates reproductive damage of male mice[J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(6): 429-440.
Figure 2. PAL improves testis morphology in CYP-treated male mice. The results were representatives of three independent replications. The images were captured using an IX83 microscope (400 ×). (a) Control group; (b) Model group; (c) 10 mg/kg PAL group; (d) 40 mg/kg PAL group.
Figure 3. PAL increases DJ-1 expression of testis in CYP-treated male mice by Western blotting. The images were representatives of three independent replications. Data were expressed as mean ± SD. ##P < 0.01 versus control mice. **P < 0.01 versus CYP only mice. △P < 0.05 versus 10 mg/kg PAL mice.
Figure 4. PAL reduces ICAM-1 expression and enhances VCAM-1 expression of testis in CYP-treated male mice by Western blotting. The images were representatives of three independent replications. Data were expressed as mean ± SD. ##P < 0.01 versus control mice. **P < 0.01 versus CYP only mice. △P < 0.05 versus 10 mg/kg PAL mice.
Figure 5. PAL increases PEDF and VEGF expressions of testis in CYP-treated male mice by Western blotting. The images were representatives of three independent replications. Data were expressed as mean ± SD. ##P < 0.01 versus control mice. *P < 0.05, **P < 0.01 versus CYP only mice. △P < 0.05, △△P < 0.01 versus 10 mg/kg PAL mice.
Figure 6. PAL increases PPARγ expression of testis in CYP-treated male mice by Western blotting. The images were representatives of three independent replications. Data were expressed as mean ± SD. ##P < 0.01 versus control mice. *P < 0.05 versus CYP only mice. △P < 0.05 versus 10 mg/kg PAL mice.
[1] |
Barnhart, K.T. Epidemiology of male and female reproductive disorders and impact on fertility regulation and population growth. Fertil. Steril. 2011, 95, 2200–2203.
|
[2] |
Bonde, J.P. Male reproductive organs are at risk from environmental hazards. Asian J. Androl. 2010, 12, 152–156.
|
[3] |
Okolo, K.O.; Siminialayi, I.M.; Orisakwe, O.E. Protective effects of Pleurotus tuber-regium on carbon- tetrachloride induced testicular injury in sprague dawley rats. Front. Pharmacol. 2016, 7, 480.
|
[4] |
Kenney, L.B.; Laufer, M.R.; Grant, F.D.; Grier, H.; Diller, L. High risk of infertility and long term gonadal damage in males treated with high dose cyclophosphamide for sarcoma during childhood. Cancer. 2001, 91, 613–621.
|
[5] |
Charak, B.S.; Gupta, R.; Mandrekar, P.; Sheth, N.A.; Banavali, S.D.; Saikia, T.K.; Gopal, R.; Dinshaw, K.A.; Advani, S.H. Testicular dysfunction after cyclophosphamide-vincristine-procarbazine-prednisolone chemotherapy for advanced Hodgkin's disease. A long-term follow-up study. Transl. Lung Cancer Res. 1990, 65, 1903–1906.
|
[6] |
Drumond, A.L.; Weng, C.C.; Wang, G.S.; Chiarini-Garcia, H.; Eras-Garcia, L.; Meistrich, M.L. Effects of multiple doses of cyclophosphamide on mouse testes: Accessing the germ cells lost, and the functional damage of stem cells. Reprod. Toxicol. 2011, 32, 395–406.
|
[7] |
Elangovan, N.; Chiou, T.J.; Tzeng, W.F.; Chu, S.T. Cyclophosphamide treatment causes impairment of sperm and its fertilizing ability in mice. Toxicology. 2006, 222, 60–70.
|
[8] |
Agarwal, A.; Said, T.M. Carnitines and male infertility. Reprod. Biomed. Online. 2004, 8, 376–384.
|
[9] |
Ji, H.J.; Wang, D.M.; Wu, Y.P.; Niu, Y.Y.; Jia, L.L.; Liu, B.W.; Feng, Q.J.; Feng, M.L. Wuzi Yanzong pill, a Chinese polyherbal formula, alleviates testicular damage in mice induced by ionizing radiation. BMC Complement. Altern. Med. 2016, 16, 509.
|
[10] |
Kim, K.J.; Kim, M.A.; Jung, J.H. Antitumor and antioxidant activity of protocatechualdehyde produced from Streptomyces lincolnensis M-20. Arch. Pharm. Res. 2008, 31, 1572–1577.
|
[11] |
Chang, Z.Q.; Gebru, E.; Lee, S.P.; Rhee, M.H.; Kim, J.C.; Cheng, H.; Park, S.C. In vitro antioxidant and anti-inflammatory activities of protocatechualdehyde isolated from Phellinus gilvus. J. Nutr. Sci. Vitaminol. 2011, 57, 118–122.
|
[12] |
Gao, J.W.; Yamane, T.; Maita, H.; Ishikawa, S.; Iguchi-Ariga, S.M.M.; Pu, X.P.; Ariga, H. DJ-1-mediated protective effect of protocatechuic aldehyde against oxidative stress in SH-SY5Y cells. J. Pharmacol. Sci. 2011, 115, 36–44.
|
[13] |
Gao, L.; Wu, W.F.; Dong, L.; Ren, G.L.; Li, H.D.; Yang, Q.; Li, X.F.; Xu, T.; Li, Z.; Wu, B.M.; Ma, T.T.; Huang, C.; Huang, Y.; Zhang, L.; Lv, X.; Li, J.; Meng, X.M. Protocatechuic aldehyde attenuates cisplatin-induced acute kidney injury by suppressing nox-mediated oxidative stress and renal inflammation. Front. Pharmacol. 2016, 7, 479.
|
[14] |
Guo, C.; Wang, S.; Duan, J.; Jia, N.; Zhu, Y.; Ding, Y.; Guan, Y.; Wei, G.; Yin, Y.; Xi, M.; Wen, A. Protocatechualdehyde protects against cerebral ischemia-reperfusion-induced oxidative injury via protein kinase Cε/Nrf2/HO-1 pathway. Mol. Neurobiol. 2017, 54, 833–845.
|
[15] |
Jeong, J.B.; Lee, S.H. Protocatechualdehyde possesses anti-cancer activity through downregulating cyclin D1 and HDAC2 in human colorectal cancer cells. Biochem. Biophys. Res. Commun. 2013, 430, 381–386.
|
[16] |
Zhong, S.; Li, Y.G.; Ji, D.F.; Lin, T.B.; Lv, Z.Q. Protocatechualdehyde induces S-phase arrest and apoptosis by stimulating the p27KIP1-cyclin A/D1-CDK2 and mitochondrial apoptotic pathways in HT-29 cells. Molecules. 2016, 21, 934.
|
[17] |
Zhao, X.; Zhai, S.; An, M.S.; Wang, Y.H.; Yang, Y.F.; Ge, H.Q.; Liu, J.H.; Pu, X.P. Neuroprotective effects of protocatechuic aldehyde against neurotoxin-induced cellular and animal models of Parkinson's disease. PLoS One. 2013, 8, e78220.
|
[18] |
Selvakumar, E.; Prahalathan, C.; Sudharsan, P.T.; Varalakshmi, P. Chemoprotective effect of lipoic acid against cyclophosphamide-induced changes in the rat sperm. Toxicology. 2006, 217, 71–78.
|
[19] |
Das, U.B.; Mallick, M.; Debnath, J.M.; Ghosh, D. Protective effect of ascorbic acid on cyclophosphamide- induced testicular gametogenic and androgenic disorders in male rats. Asian J. Androl. 2002, 4, 201–207.
|
[20] |
Ghosh, D.; Das, U.B.; Misro, M. Protective role of alpha-tocopherol-succinate (provitamin-E) in cyclophosphamide induced testicular gametogenic and steroidogenic disorders: a correlative approach to oxidative stress. Free. Radic. Res. 2002, 36, 1209–1218.
|
[21] |
Silva, E.; Almeida, H.; Castro, J.P. (in)fertility and oxidative stress: new insights into novel redox mechanisms controlling fundamental reproductive processes. Oxid. Med. Cell Longev. 2020, 2020, 4674896.
|
[22] |
Aitken, R.J.; Roman, S.D. Antioxidant systems and oxidative stress in the testes. Oxid. Med. Cell Longev. 2008, 1, 15–24.
|
[23] |
Wagenfeld, A.; Yeung, C.H.; Shivaji, S.; Sundareswaran, V.R.; Ariga, H.; Cooper, T.G. Expression and cellular localization of contraception-associated protein. J. Androl. 2000, 21, 954–963.
|
[24] |
Yoshida, K.; Sato, Y.; Yoshiike, M.; Nozawa, S.; Ariga, H.; Iwamoto, T. Immunocytochemical localization of DJ-1 in human male reproductive tissue. Mol. Reprod. Dev. 2003, 66, 391–397.
|
[25] |
Klinefelter, G.R.; Laskey, J.W.; Ferrell, J.; Suarez, J.D.; Roberts, N.L. Discriminant analysis indicates a single sperm protein (SP22) is predictive of fertility following exposure to epididymal toxicants. J. Androl. 1997, 18, 139–150.
|
[26] |
Wagenfeld, A.; Gromoll, J.; Cooper, T.G. Molecular cloning and expression of rat contraception associated protein 1 (CAP1), a protein putatively involved in fertilization. Biochem. Biophys. Res. Commun. 1998, 251, 545–549.
|
[27] |
Xiao, X.; Cheng, C.Y.; Mruk, D.D. Intercellular adhesion molecule-1 is a regulator of blood–testis barrier function. J. Cell Sci. 2012, 125, 5677–5689.
|
[28] |
Sainio-Pöllänen, S.; Sundström, J.; Erkkilä, S.; Hänninen, A.; Vainiopää, M.; Martikainen, M.; Salminen, E.; Veräjänkorva, E.; Antola, H.; Nikula, H.; Simell, O.; Pöllänen, P. CD106 (VCAM-1) in testicular immunoregulation. J. Reprod. Immunol. 1997, 33, 221–238.
|
[29] |
Windschüttl, F.; Kampfer, C.; Mayer, C.; Flenkenthaler, F.; Fröhlich, T.; Schwarzer, J.U.; Köhn, F.M.; Urbanski, H.; Arnold, G.J.; Mayerhofer, A. Human testicular peritubular cells secrete pigment epithelium-derived factor (PEDF), which may be responsible for the avascularity of the seminiferous tubules. Sci. Rep. 2015, 5, 12820.
|
[30] |
Ergün, S.; Kiliç, N.; Fiedler, W.; Mukhopadhyay, A.K. Vascular endothelial growth factor and its receptors in normal human testicular tissue. Mol. Cell Endocrinol. 1997, 131, 9–20.
|
[31] |
Corton, J.C.; Lapinskas, P.J. Peroxisome proliferator-activated receptors: mediators of phthalate ester-induced effects in the male reproductive tract? Toxicol. Sci. 2004, 83, 4–17.
|
[32] |
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 2012, 75, 311–335.
|
[33] |
Block, K.I.; Gyllenhaal, C.; Lowe, L.; Amedei, A.; Amin, A.R.M.R.; Amin, A.; Aquilano, K.; Arbiser, J.; Arreola, A.; Arzumanyan, A.; Ashraf, S.S.; Azmi, A.S.; Benencia, F.; Bhakta, D.; Bilsland, A.; Bishayee, A.; Blain, S.W.; Block, P.B.; Zollo, M. Designing a broad-spectrum integrative approach for cancer prevention and treatment. Semin. Cancer Biol. 2015, 35, S276–S304
|
[34] |
Jeyendran, R.S.; Van der Ven, H.H.; Perez-Pelaez, M.; Crabo, B.G.; Zaneveld, L.J. Development of an assay to assess the functional integrity of the human sperm membrane and its relationship to other semen characteristics. J. Reprod. Fertil. 1984, 70, 219–228.
|
[35] |
Check, J.H.; Epstein, R.; Nowroozi, K.; Shanis, B.S.; Wu, C.H.; Bollendorf, A. The hypoosmotic swelling test as a useful adjunct to the semen analysis to predict fertility potential. Fertil. Steril. 1989, 52, 159–161.
|
[36] |
Bhattacharya, S.M. Hypo-osmotic swelling test and unexplained repeat early pregnancy loss. J. Obstet. Gynaecol. Res. 2010, 36, 119–122.
|
[37] |
Charehjooy, N.; Najafi, M.H.; Tavalaee, M.; Deemeh, M.R.; Azadi, L.; Shiravi, A.H.; Nasr-Esfahani, M.H. Selection of sperm based on hypo-osmotic swelling may improve ICSI outcome: a preliminary prospective clinical trial. Int. J. Fertil. Steril. 2014, 8, 21–28.
|
[38] |
de Lamirande, E.; San Gabriel, M.C.; Zini, A. Human sperm chromatin undergoes physiological remodeling during in vitro capacitation and acrosome reaction. J. Androl. 2012, 33, 1025–1035.
|
[39] |
Dominguez, K.; Arca, C.D.R.; Ward, W.S. The relationship between chromatin structure and DNA damage in mammalian spermatozoa. Sperm Chromatin. New York, NY: Springer New York. 2011, 61–68.
|
[40] |
Zhang, X.; San Gabriel, M.; Zini, A. Sperm nuclear histone to protamine ratio in fertile and infertile men: evidence of heterogeneous subpopulations of spermatozoa in the ejaculate. J. Androl. 2006, 27, 414–420.
|
[41] |
Tremellen, K. Oxidative stress and male infertility— a clinical perspective. Hum. Reprod Update. 2008, 14, 243–258.
|
[42] |
Selvakumar, E.; Prahalathan, C.; Mythili, Y.; Varalakshmi, P. Beneficial effects of DL-alpha-lipoic acid on cyclophosphamide-induced oxidative stress in mitochondrial fractions of rat testis. Chem. Biol. Interact. 2005, 152, 59–66.
|
[43] |
Okada, M.; Matsumoto, K.; Niki, T.; Taira, T.; Iguchi-Ariga, S.M.; Ariga, H. DJ-1, a target protein for an endocrine disrupter, participates in the fertilization in mice. Biol. Pharm. Bull. 2002, 25, 853–856.
|
[44] |
Welch, J.E.; Barbee, R.R.; Roberts, N.L.; Suarez, J.D.; Klinefelter, G.R. SP22: a novel fertility protein from a highly conserved gene family. J. Androl. 1998, 19, 385–393.
|
[45] |
An, C.N.; Jiang, H.; Wang, Q.; Yuan, R.P.; Liu, J.M.; Shi, W.L.; Zhang, Z.Y.; Pu, X.P. Down-regulation of DJ-1 protein in the ejaculated spermatozoa from Chinese asthenozoospermia patients. Fertil. Steril. 2011, 96, 19–23.e2.
|
[46] |
Taira, T.; Saito, Y.; Niki, T.; Iguchi-Ariga, S.M.; Takahashi, K.; Ariga, H. DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep. 2004, 5, 213–218.
|
[47] |
Kinumi, T.; Kimata, J.; Taira, T.; Ariga, H.; Niki, E. Cysteine-106 of DJ-1 is the most sensitive cysteine residue to hydrogen peroxide-mediated oxidation in vivo in human umbilical vein endothelial cells. Biochem. Biophys. Res. Commun. 2004, 317, 722–728.
|
[48] |
Clements, C.M.; McNally, R.S.; Conti, B.J.; Mak, T.W.; Ting, J.P. DJ-1, a cancer- and Parkinson's disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc. Natl. Acad. Sci. USA. 2006, 103, 15091–15096.
|
[49] |
Riccioli, A.; Filippini, A.; De Cesaris, P.; Barbacci, E.; Stefanini, M.; Starace, G.; Ziparo, E. Inflammatory mediators increase surface expression of integrin ligands, adhesion to lymphocytes, and secretion of interleukin 6 in mouse Sertoli cells. Proc. Natl. Acad. Sci. USA. 1995, 92, 5808–5812.
|
[50] |
Veräjäkorva, E.; Laato, M.; Pöllänen, P. CD 99 and CD 106 (VCAM-1) in human testis. Asian J. Androl. 2002, 4, 243–248.
|
[51] |
De Cesaris, P.; Starace, D.; Riccioli, A.; Padula, F.; Filippini, A.; Ziparo, E. Tumor necrosis factor-alpha induces interleukin-6 production and integrin ligand expression by distinct transduction pathways. J. Biol. Chem. 1998, 273, 7566–7571.
|
[52] |
Collin, O.; Bergh, A. Leydig cells secrete factors which increase vascular permeability and endothelial cell proliferation. Int. J. Androl. 1996, 19, 221–228.
|
[53] |
Rudolfsson, S.H.; Wikström, P.; Jonsson, A.; Collin, O.; Bergh, A. Hormonal regulation and functional role of vascular endothelial growth factor A in the rat testis. Biol. Reprod. 2004, 70, 340–347.
|
[54] |
Cool, J.; Capel, B. VEGF mediated endothelial migration is required for testis morphogenesis. Dev. Biol. 2009, 331, 497.
|
[55] |
Lu, N.; Sargent, K.M.; Clopton, D.T.; Pohlmeier, W.E.; Brauer, V.M.; McFee, R.M.; Weber, J.S.; Ferrara, N.; Silversides, D.W.; Cupp, A.S. Loss of vascular endothelial growth factor A (VEGFA) isoforms in the testes of male mice causes subfertility, reduces sperm numbers, and alters expression of genes that regulate undifferentiated spermatogonia. Endocrinology. 2013, 154, 4790–4802.
|
[56] |
Thomas, K.; Sung, D.Y.; Chen, X.; Thompson, W.; Chen, Y.E.; McCarrey, J.; Walker, W.; Griswold, M. Developmental patterns of PPAR and RXR gene expression during spermatogenesis. Front. Biosci. (Elite Ed). 2011, 3, 1209–1220.
|
[57] |
Yu, Z.Z.; Chen, J.; Shou, P.Q.; Feng, L. Effects of micronutrients on the reproduction of infertility rat model induced by adenine. Int. J. Clin. Exp. Med. 2014, 7, 2754–2762.
|
[58] |
Luo, S.B.; Jia, J.M.; Ma, W.G.; Jiao, Y.Z.; Dong, J.C. Effects of cyclophosphamide on the concentration of calcium Ion in mice spermatozoa. Chin. J. Androl. 2010, 24, 19–21.
|
[59] |
Sadek, A.; Almohamdy, A.S.A.; Zaki, A.; Aref, M.; Ibrahim, S.M.; Mostafa, T. Sperm chromatin condensation in infertile men with varicocele before and after surgical repair. Fertil. Steril. 2011, 95, 1705–1708.
|
[60] |
Boitrelle, F.; Ferfouri, F.; Petit, J.M.; Segretain, D.; Tourain, C.; Bergere, M.; Bailly, M.; Vialard, F.; Albert, M.; Selva, J. Large human sperm vacuoles observed in motile spermatozoa under high magnification: nuclear thumbprints linked to failure of chromatin condensation. Hum. Reprod. 2011, 26, 1650–1658.
|
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||