中国药学(英文版) ›› 2022, Vol. 31 ›› Issue (2): 81-96.DOI: 10.5246/jcps.2022.02.007
• 【综述】 • 下一篇
Haneen Mohammad*(), Muhammed Alzweiri
收稿日期:
2021-09-12
修回日期:
2021-10-27
接受日期:
2021-11-23
出版日期:
2022-02-27
发布日期:
2022-02-25
通讯作者:
Haneen Mohammad
作者简介:
Haneen Mohammad*(), Muhammed Alzweiri
Received:
2021-09-12
Revised:
2021-10-27
Accepted:
2021-11-23
Online:
2022-02-27
Published:
2022-02-25
Contact:
Haneen Mohammad
摘要:
Ficus carica tree produces a white sap that is traditionally used for the treatment of skin conditions, such as warts. Ficus carica latex is considered a rich source of proteins and metabolites that have various pharmacological activities. Most of the latex pharmacological activities are attributed to its phenolic content, such as anticancer, antiviral, antioxidant, anti-angiogenic, hepatoprotective, and wound-healing activities. Moreover, Ficus carica latex contains proteases that are involved in the treatments of skin conditions, such as warts, and display antiparasitic activity. Additionally, chitinase enzymes and coumarins are isolated from Ficus carica latex and involved in the antimicrobial activities of latex.
Supporting:
Haneen Mohammad, Muhammed Alzweiri. Phytochemistry and pharmacological activities of Ficus carica latex: a systematic review[J]. 中国药学(英文版), 2022, 31(2): 81-96.
Haneen Mohammad, Muhammed Alzweiri. Phytochemistry and pharmacological activities of Ficus carica latex: a systematic review[J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(2): 81-96.
[1] |
Konno, K. Plant latex and other exudates as plant defense systems: Roles of various defense chemicals and proteins contained therein. Phytochemistry. 2011, 72, 1510–1530.
|
[2] |
Licá, I.C.L.; Soares, A.M.D.S.; de Mesquita, L.S.S.; Malik, S. Biological properties and pharmacological potential of plant exudates. Food Res. Int. 2018, 105, 1039–1053.
|
[3] |
Upadhyay, R. Plant latex: a natural source of pharmaceuticals and pesticides. Int. J. Green Pharm. 2011, 5, 169.
|
[4] |
Yuan, H.D.; Ma, Q.Q.; Ye, L.; Piao, G.C. The traditional medicine and modern medicine from natural products. Molecules. 2016, 21, 559.
|
[5] |
Abdel-Rahman, R.; Ghoneimy, E.; Abdel-Wahab, A.; Eldeeb, N.; Salem, M.; Salama, E.; Ahmed, T. The therapeutic effects of Ficus carica extract as antioxidant and anticancer agent. South Afr. J. Bot. 2021, 141, 273–277.
|
[6] |
Badgujar, S.B.; Patel, V.V.; Bandivdekar, A.H.; Mahajan, R.T. Traditional uses, phytochemistry and pharmacology of Ficus carica: a review. Pharm. Biol. 2014, 52, 1487–1503.
|
[7] |
Shin, B.S.; Lee, S.A.; Moon, S.M.; Han, S.H.; Hwang, E.J.; Kim, S.G.; Kim, D.K.; Kim, J.S.; Park, B.R.; Kim, C.S. Latex of ficus carica L. induces apoptosis through caspase and bcl-2 family in FaDu human hypopharynx squamous carcinoma cells. Int. J. Oral Biol. 2017, 42, 183–190.
|
[8] |
Lazreg Aref, H.; Zaouay, F.; Hammami, M.; Mars, M. Fig fruit latex yield and protease activity as influenced by cultivar, maturity stage and harvesting time. Acta Hortic. 2017, 323–328.
|
[9] |
Lomolino, G.; Zannoni, S.; Di Pierro, G. Characterization of crude esterase activity from two plants used in cheese making: cynara cardunculus L. and ficus carica L. Food Biotechnol. 2015, 29, 297–316.
|
[10] |
Nouani, A.; Dako, E.; Morsli, A.; Belhamiche, N.; Belbraouet, S.; Bellal, M.M.; Dadie, A. Characterization of the purified coagulant extracts derived from artichoke flowers (Cynara scolymus) and from the fig tree latex (Ficus carica) in light of their use in the manufacture of traditional cheeses in Algeria. J. Food Technol. 2009, 7, 20–29.
|
[11] |
Raskovic, B.G.; Polovic, N.D. Collegenase activity in fig latex could contribute to its efficacy in ethnomedicinal preparations. J. Herb. Med. 2016, 6, 73–78.
|
[12] |
Mawa, S.; Husain, K.; Jantan, I. Ficus carica L. (Moraceae): phytochemistry, traditional uses and biological activities. Evid. Based Complement. Alternat. Med. 2013, 2013, 1–8.
|
[13] |
Kang, H.; Kang, M.Y.; Han, K.H. Identification of natural rubber and characterization of rubber biosynthetic activity in fig tree. Plant Physiol. 2000, 123, 1133–1142.
|
[14] |
Kim, J.S.; Kim, Y.O.; Ryu, H.J.; Kwak, Y.S.; Lee, J.Y.; Kang, H. Isolation of stress-related genes of rubber particles and latex in fig tree (ficus carica) and their expressions by abiotic stress or plant hormone treatments. Plant Cell Physiol. 2003, 44, 412–414.
|
[15] |
Konno, K. Plant latex and other exudates as plant defense systems: Roles of various defense chemicals and proteins contained therein. Phytochemistry. 2011, 72, 1510–1530.
|
[16] |
Agrawal, A.A.; Konno, K. Latex: a model for understanding mechanisms, ecology, and evolution of plant defense against herbivory. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 311–331.
|
[17] |
Kim, J.S.; Kim, Y.O.; Ryu, H.J.; Kwak, Y.S.; Lee, J.Y.; Kang, H. Isolation of stress-related genes of rubber particles and latex in fig tree (ficus carica) and their expressions by abiotic stress or plant hormone treatments. Plant Cell Physiol. 2003, 44, 412–414.
|
[18] |
van Beilen, J.B.; Poirier, Y. Establishment of new crops for the production of natural rubber. Trends Biotechnol. 2007, 25, 522–529.
|
[19] |
Bohlmann, J.; Keeling, C.I. Terpenoid biomaterials. Plant J. 2008, 54, 656–669.
|
[20] |
Pichersky, E.; Raguso, R.A. Why do plants produce so many terpenoid compounds? New Phytol. 2018, 220, 692–702.
|
[21] |
Oliveira, A.P.; Silva, L.R.; Ferreres, F.; Guedes de Pinho, P.; Valentão, P.; Silva, B.M.; Pereira, J.A.; Andrade, P.B. Chemical assessment and in vitro antioxidant capacity of ficus carica latex. J. Agric. Food Chem. 2010, 58, 3393–3398.
|
[22] |
Dugrand-Judek, A.; Olry, A.; Hehn, A.; Costantino, G.; Ollitrault, P.; Froelicher, Y.; Bourgaud, F. The distribution of coumarins and furanocoumarins in citrus species closely matches citrus phylogeny and reflects the organization of biosynthetic pathways. PLoS One. 2015, 10, e0142757.
|
[23] |
Lazreg-Aref, H.; Mars, M.; Fekih, A.; Aouni, M.; Said, K. Chemical composition and antibacterial activity of a hexane extract of Tunisian caprifig latex from the unripe fruit of Ficus carica. Pharm. Biol. 2012, 50, 407–412.
|
[24] |
Lazreg-Aref, H.; Gaaliche, B.; Ladhari, A.; Hammami, M.; Hammami, S.O. Co-evolution of enzyme activities and latex in fig (Ficus carica L.) during fruit maturity process. South Afr. J. Bot. 2018, 115, 143–152.
|
[25] |
Zaynoun, S.T.; Aftimos, B.G.; Ali, L.; Tenekjian, K.K.; Khalide, U.; Kurban, A.K. Ficus carica; isolation and quantification of the photoactive components. Contact Dermat. 1984, 11, 21–25.
|
[26] |
Bruni, R.; Barreca, D.; Protti, M.; Brighenti, V.; Righetti, L.; Anceschi, L.; Mercolini, L.; Benvenuti, S.; Gattuso, G.; Pellati, F. Botanical sources, chemistry, analysis, and biological activity of furanocoumarins of pharmaceutical interest. Molecules. 2019, 24, 2163.
|
[27] |
Parrish, J.A. Phototherapy and photochemotherapy of skin diseases. J. Investig. Dermatol. 1981, 77, 167–171.
|
[28] |
Garde-Cerdán, T.; Gonzalo-Diago, A.; Pérez-Álvarez, E.P. Phenolic compounds: Types, effects and research. Nova Science Publishers. 2017.
|
[29] |
Abdel-Aty, A.M.; Hamed, M.B.; Salama, W.H.; Ali, M.M.; Fahmy, A.S.; Mohamed, S.A. Ficus carica, Ficus sycomorus and Euphorbia tirucalli latex extracts: Phytochemical screening, antioxidant and cytotoxic properties. Biocatal. Agric. Biotechnol. 2019, 20, 101199.
|
[30] |
Tezcan, G.; Tunca, B.; Bekar, A.; Yalcin, M.; Sahin, S.; Budak, F.; Cecener, G.; Egeli, U.; Demir, C.; Guvenc, G.; Yilmaz, G.; Erkan, L.G.; Malyer, H.; Taskapilioglu, M.O.; Evrensel, T.; Bilir, A. Ficus carica latex prevents invasion through induction of let-7d expression in GBM cell lines. Cell Mol. Neurobiol. 2015, 35, 175–187.
|
[31] |
Aref, H.L. In vitro antiviral activities of Jrani caprifig latex and its related terpenes. Afr. J. Microbiol. Res. 2011, 5, 5812–5818.
|
[32] |
Imran, M.; Arshad, M.S.; Butt, M.S.; Kwon, J.H.; Arshad, M.U.; Sultan, M.T. Mangiferin: a natural miracle bioactive compound against lifestyle related disorders. Lipids Heal. Dis. 2017, 16, 84.
|
[33] |
Oliveira, A.P.; Silva, L.R.; Andrade, P.B.; Valentão, P.; Silva, B.M.; Gonçalves, R.F.; Pereira, J.A.; Guedes de Pinho, P. Further insight into the latex metabolite profile of Ficus carica. J. Agric. Food Chem. 2010, 58, 10855–10863.
|
[34] |
Woyengo, T.A.; Ramprasath, V.R.; Jones, P.J.H. Anticancer effects of phytosterols. Eur. J. Clin. Nutr. 2009, 63, 813–820.
|
[35] |
Kabara, J.J.; Swieczkowski, D.M.; Conley, A.J.; Truant, J.P. Fatty acids and derivatives as antimicrobial agents. Antimicrob. Agents Chemother. 1972, 2, 23–28.
|
[36] |
McGaw, L.J.; Jäger, A.K.; van Staden, J. Antibacterial effects of fatty acids and related compounds from plants. South Afr. J. Bot. 2002, 68, 417–423.
|
[37] |
Vargas, C. Organic Acids : Characteristics, Properties and Synthesis. Nova Science Publishers, Inc: Hauppauge, New York. 2016, 29–30.
|
[38] |
Rancourt, G.C. Proteomics : Methods, Applications and Limitations. Nova Science Publishers, Inc: New York. 2011.
|
[39] |
Kitajima, S.; Aoki, W.; Shibata, D.; Nakajima, D.; Sakurai, N.; Yazaki, K.; Munakata, R.; Taira, T.; Kobayashi, M.; Aburaya, S.; Savadogo, E.H.; Hibino, S.; Yano, H. Comparative multi-omics analysis reveals diverse latex-based defense strategies against pests among latex-producing organs of the fig tree (Ficus carica). Planta. 2018, 247, 1423–1438.
|
[40] |
van der Hoorn Renier A L. Plant proteases: from phenotypes to molecular mechanisms. Annu. Rev. Plant Biol. 2008, 59, 191–223.
|
[41] |
Martinez, M.; Gómez-Cabellos, S.; Giménez, M.J.; Barro, F.; Diaz, I.; Diaz-Mendoza, M. Plant proteases: from key enzymes in germination to allies for fighting human gluten-related disorders. Front. Plant Sci. 2019, 10, 721.
|
[42] |
Azarkan, M.; Matagne, A.; Wattiez, R.; Bolle, L.; Vandenameele, J.; Baeyens-Volant, D. Selective and reversible thiol-pegylation, an effective approach for purification and characterization of five fully active ficin (iso)forms from Ficus carica latex. Phytochemistry. 2011, 72, 1718–1731.
|
[43] |
Valdemiro, C.; Sgarbieri, S.M.; Gupte, D.E.K. Separation of the proteolytic. 1964, 239.
|
[44] |
Devaraj, K.B.; Kumar, P.R.; Prakash, V. Purification, characterization, and solvent-induced thermal stabilization of ficin from ficus carica. J. Agric. Food Chem. 2008, 56, 11417–11423.
|
[45] |
Cho, U.M.; Choi, D.H.; Yoo, D.S.; Park, S.J.; Hwang, H.S. Inhibitory effect of ficin derived from fig latex on inflammation and melanin production in skin cells. Biotechnol. Bioprocess Eng. 2019, 24, 288–297.
|
[46] |
Yang, Y.; Shen, D.; Long, Y.; Xie, Z.; Zheng, H. Intrinsic peroxidase-like activity of ficin. Sci. Rep. 2017, 7, 43141.
|
[47] |
Aider, M. Potential applications of ficin in the production of traditional cheeses and protein hydrolysates. JDS Commun. 2021, 2, 233–237.
|
[48] |
Morellon-Sterling, R.; El-Siar, H.; Tavano, O.L.; Berenguer-Murcia, Á.; Fernández-Lafuente, R. Ficin: a protease extract with relevance in biotechnology and biocatalysis. Int. J. Biol. Macromol. 2020, 162, 394–404.
|
[49] |
Di Pierro, G.; O’Keeffe, M.B.; Poyarkov, A.; Lomolino, G.; FitzGerald, R.J. Antioxidant activity of bovine casein hydrolysates produced by Ficus carica L.-derived proteinase. Food Chem. 2014, 156, 305–311.
|
[50] |
Nishimura, K.; Higashiya, K.; Ueshima, N.; Kojima, K.; Takita, T.; Abe, T.; Takahashi, T.; Yasukawa, K. Insight into the collagen-degrading activity of a serine protease in the latex of Ficus carica cultivar Masui Dauphine. Biosci. Biotechnol. Biochem. 2021, 85, 1147–1156.
|
[51] |
Raskovic, B.; Bozovic, O.; Prodanovic, R.; Niketic, V.; Polovic, N. Identification, purification and characterization of a novel collagenolytic serine protease from fig (Ficus carica var. Brown Turkey) latex. J. Biosci. Bioeng. 2014, 118, 622–627.
|
[52] |
Villard, C.; Larbat, R.; Munakata, R.; Hehn, A. Defence mechanisms of Ficus: pyramiding strategies to cope with pests and pathogens. Planta. 2019, 249, 617–633.
|
[53] |
Cotabarren, J.; Lufrano, D.; Parisi, M.G.; Obregón, W.D. Biotechnological, biomedical, and agronomical applications of plant protease inhibitors with high stability: a systematic review. Plant Sci. 2020, 292, 110398.
|
[54] |
Shamsi, T.N.; Parveen, R.; Afreen, S.; Azam, M.; Sen, P.; Sharma, Y.; Haque, Q.M.R.; Fatma, T.; Manzoor, N.; Fatima, S. Trypsin inhibitors from cajanus Cajan and phaseolus limensis possess antioxidant, anti-inflammatory, and antibacterial activity. J. Diet. Suppl. 2018, 15, 939–950.
|
[55] |
Cotabarren, J.; Broitman, D.J.; Quiroga, E.; Obregón, W.D. GdTI, the first thermostable trypsin inhibitor from Geoffroea decorticans seeds. A novel natural drug with potential application in biomedicine. Int. J. Biol. Macromol. 2020, 148, 869–879.
|
[56] |
Kytidou, K.; Artola, M.; Overkleeft, H.S.; Aerts, J.M.F.G. Plant glycosides and glycosidases: a treasure-trove for therapeutics. Front. Plant Sci. 2020, 11, 357.
|
[57] |
Chang, Y.M.; Chung, Y.C.; Hsu, C.C.; Chen, L.C.; Sung, H.Y. Biochemical characterization of a β-N-acetylhex-osaminidase from fig latex. Bot. Stud. 2011, 52, 23–34.
|
[58] |
Ryšlavá, H.; Valenta, R.; Hýsková, V.; Křížek, T.; Liberda, J.; Coufal, P. Purification and enzymatic characterization of tobacco leaf β-N-acetylhexosaminidase. Biochimie. 2014, 107, 263–269.
|
[59] |
Bojarová, P.; Kulik, N.; Slámová, K.; Hubálek, M.; Kotik, M.; Cvačka, J.; Pelantová, H.; Křen, V. Selective β-N-acetylhexosaminidase from Aspergillus versicolor—a tool for producing bioactive carbohydrates. Appl. Microbiol. Biotechnol. 2019, 103, 1737–1753.
|
[60] |
Rathore, A.S.; Gupta, R.D. Chitinases from bacteria to human: properties, applications, and future perspectives. Enzyme Res. 2015, 2015, 791907.
|
[61] |
Elsayed, A.M.; Hegazy, U.M.; Hegazy, M.G.A.; Abdel-Ghany, S.S.; Salama, W.H.; Salem, A.M.H.; Fahmy, A.S. Purification and biochemical characterization of peroxidase isoenzymes from Ficus carica latex. Biocatal. Agric. Biotechnol. 2018, 16, 1–9.
|
[62] |
Lazreg-Aref, H.; Mosbah, H.; Fekih, A.; Mars, M.; Said, K. Purification and biochemical characterization of lipase from ficus carica latex of Tunisian east Coast zidi variety. J. Am. Oil Chem. Soc. 2012, 89, 1847–1855.
|
[63] |
Aref, H.L.; Mosbah, H.; Louati, H.; Said, K.; Selmi, B. Partial characterization of a novel amylase activity isolated from Tunisian Ficus carica latex. Pharm. Biol. 2011, 49, 1158–1166.
|
[64] |
Maruyama, S.; Miyoshi, S.; Tanaka, H. Angiotensin I-converting enzyme inhibitors derived from ficus carica. Agric. Biol. Chem. 1989, 53, 2763–2767.
|
[65] |
Riordan, J.F. Angiotensin-I-converting enzyme and its relatives. Genome Biol. 2003, 4, 225.
|
[66] |
Barolo, M.I.; Ruiz Mostacero, N.; López, S.N. Ficus carica L. (Moraceae): an ancient source of food and health. Food Chem. 2014, 164, 119–127.
|
[67] |
Sterling, J.C.; Handfield-Jones, S.; Hudson, P.M. Guidelines for the management of cutaneous warts. Br. J. Dermatol. 2001, 144, 4–11.
|
[68] |
Ringin, S.A. The effectiveness of cutaneous wart resolution with current treatment modalities. J. Cutan. Aesthetic Surg. 2020, 13, 24–30.
|
[69] |
Bohlooli, S.; Mohebipoor, A.; Mohammadi, S.; Kouhnavard, M.; Pashapoor, S. Comparative study of fig tree efficacy in the treatment of common warts (Verruca vulgaris) vs. cryotherapy. Int. J. Dermatol. 2007, 46, 524–526.
|
[70] |
Hemmatzadeh, F.; Fatemi, A.; Amini, F. Therapeutic effects of fig tree latex on bovine papillomatosis. J. Vet. Med. Ser. B. 2003, 50, 473–476.
|
[71] |
Hashemi, S.A. Abediankenari, S. Successful treatment of common warts (Verruca vulgaris) with application of fig tree latex. J. Sci. Innov. Res. 2013, 2, 981–982.
|
[72] |
Abid, T.A.; Ali, K.A. Proteolytic versus surgical removal: the therapeutic effect of fig tree latex (Ficus carica L) on cutaneous and diphtheric forms of avian pox in pigeons (Columba domestica). Iraqi J. Vet. Sci. 2014, 28, 49–53.
|
[73] |
Remlinger, P.; Bailly, J. Action of the Latex of a Fig Tree on Rabies Virus. Compte Rendul’Academie des Sci. 1947, 224, 1467–1468.
|
[74] |
Ay, E.; Duran, N. Investigation of the Antiviral Activity of Ficus carica L. Latex against HSV-2INCDTP-Leather and Footwear Research Institute (ICPI), Bucharest, Romania. 2018.
|
[75] |
Camero, M.; Marinaro, M.; Lovero, A.; Elia, G.; Losurdo, M.; Buonavoglia, C.; Tempesta, M. In vitro antiviral activity of Ficus carica latex against caprine herpesvirus-1. Nat. Prod. Res. 2014, 28, 2031–2035.
|
[76] |
Ali, M.; Nur, A.; Khatun, M.; Dash, R.; Rahman, M.; Karim, M. Identification of potential SARS-CoV-2 main protease inhibitors from Ficus Carica Latex: an in-silico approach. J. Adv. Biotechnol. Exp. Ther. 2020, 3, 57.
|
[77] |
Wright, G.D. Something old, something new: revisiting natural products in antibiotic drug discovery. Can. J. Microbiol. 2014, 60, 147–154.
|
[78] |
Mavlonov, G.T.; Ubaidullaeva, K.A.; Rakhmanov, M.I.; Abdurakhmonov, I.Y.; Abdukarimov, A. Chitin-binding antifungal protein from Ficus carica latex. Chem. Nat. Compd. 2008, 44, 216–219.
|
[79] |
de Souza, S.M.; Monache, F.D.; Smânia, A. Jr. Antibacterial activity of coumarins. Zeitschrift Für Naturforschung C. 2005, 60, 693–700.
|
[80] |
Al-Sabawi, N. The antibacterial effect of fig (leaves extract and latex) on enterococcus faeca-lis as intracanal medicament. (an in vitro study). Al Rafidain Dent. J. 2010, 10, 62–71.
|
[81] |
Aref, H.L.; Salah, K.B.; Chaumont, J.P.; Fekih, A.; Aouni, M.; Said, K. In vitro antimicrobial activity of four Ficus carica latex fractions against resistant human pathogens (antimicrobial activity of Ficus carica latex). Pak. J. Pharm. Sci. 2010, 23, 53–58.
|
[82] |
Rashid, K.I.; Mahdi, N.M.; Alwan, M.A.; Khalid, L.B. Antimicrobial activity of fig (Ficus carica Linn.) leaf extract as compared with latex extract against selected bacteria and fungi. J. Univ. Babylon. 2014, 22, 1620–1626.
|
[83] |
Nagaty, H.F.; Rifaat, M.A.; Morsy, T.A. Trials of the effect on dog ascaris in vivo produced by the latex of ficus carica and papaya carica growing in Cairo gardens. Ann. Trop. Med. Parasitol. 1959, 53, 215–219.
|
[84] |
de Amorin, A.; Borba, H.R.; Carauta, J.P.P.; Lopes, D.; Kaplan, M.A.C. Anthelmintic activity of the latex of Ficus species. J. Ethnopharmacol. 1999, 64, 255–258.
|
[85] |
Stepek, G.; Buttle, D.J.; Duce, I.R.; Lowe, A.; Behnke, J.M. Assessment of the anthelmintic effect of natural plant cysteine proteinases against the gastrointestinal nematode, Heligmosomoides polygyrus, in vitro. Parasitology. 2005, 130, 203–211.
|
[86] |
Chung, I.M.; Kim, S.J.; Yeo, M.A.; Park, S.W.; Moon, H.I. Immunotoxicity activity of natural furocoumarins from milky Sap of Ficus carica L. against Aedes aegypti L. Immunopharmacol. Immunotoxicol. 2011, 33, 515–518.
|
[87] |
Li, A.N.; Li, S.; Zhang, Y.J.; Xu, X.R.; Chen, Y.M.; Li, H.B. Resources and biological activities of natural polyphenols. Nutrients. 2014, 6, 6020–6047.
|
[88] |
Ashok, C.D.; Prachu, B.M.; Umesh, J.U.; Manohar, P.V. Antibacterial and antioxidant activity of plant latex. J. Pharm. Res. 2011, 4, 406–407.
|
[89] |
Shahinuzzaman, M.; Yaakob, Z.; Anuar, F.H.; Akhtar, P.; Kadir, N.H.A.; Hasan, A.K.M.; Sobayel, K.; Nour, M.; Sindi, H.; Amin, N.; Sopian, K.; Akhtaruzzaman, M. In vitro antioxidant activity of Ficus carica L. latex from 18 different cultivars. Sci. Rep. 2020, 10, 10852.
|
[90] |
Paşayeva, L.; Özalp, B.; Fatullayev, H. Potential enzyme inhibitory properties of extracts and fractions from fruit latex of Ficus carica-based on inhibition of α-amylase and α-glucosidase. J. Food Meas. Charact. 2020, 14, 2819–2827.
|
[91] |
The effects of the fraction R3 of the latex of ficus carica L. on the tissues of mice bearing spontaneous mammary tumors. Exp. Med. Surg. 1952, 10, 287–305.
|
[92] |
Ghandehari, F.; Fatemi, M. The effect of Ficus carica latex on 7, 12-dimethylbenz (a) anthracene-induced breast cancer in rats. Avicenna J. Phytomedicine. 2018, 8, 286–295.
|
[93] |
Wang, J.; Wang, X.J.; Jiang, S.; Lin, P.; Zhang, J.; Lu, Y.R.; Wang, Q.; Xiong, Z.J.; Wu, Y.Y.; Ren, J.J.; Yang, H.L. Cytotoxicity of fig fruit latex against human cancer cells. Food Chem. Toxicol. 2008, 46, 1025–1033.
|
[94] |
Khodarahmi, G.A.; Ghasemi, N.; Hassanzadeh, F.; Safaie, M. Cytotoxic effects of different extracts and latex of ficus carica L. on HeLa cell line. Iran. J. Pharm. Res. 2011, 10, 273–277.
|
[95] |
Menichini, G.; Alfano, C.; Provenzano, E.; Marrelli, M.; Statti, G.A.; Somma, F.; Menichini, F.; Conforti, F. Fig latex (ficus carica L. cultivar dottato) in combination with UV irradiation decreases the viability of A375 melanoma cells in vitro. Anti Cancer Agents Med. Chem. 2012, 12, 959–965.
|
[96] |
Shin, B.S.; Lee, S.A.; Moon, S.M.; Han, S.H.; Hwang, E.J.; Kim, S.G.; Kim, D.K.; Kim, J.S.; Park, B.R.; Kim, C.S. Latex of ficus carica L. induces apoptosis through caspase and bcl-2 family in FaDu human hypopharynx squamous carcinoma cells. Int. J. Oral Biol. 2017, 42, 183–190.
|
[97] |
Ghanbari, A.; Le Gresley, A.; Naughton, D.; Kuhnert, N.; Sirbu, D.; Ashrafi, G.H. Biological activities of Ficus carica latex for potential therapeutics in Human Papillomavirus (HPV) related cervical cancers. Sci. Rep. 2019, 9, 1013.
|
[98] |
Sheikh, B.Y.; Sarker, M.M.R.; Kamarudin, M.N.A.; Ismail, A. Prophetic medicine as potential functional food elements in the intervention of cancer: a review. Biomed. Pharmacother. 2017, 95, 614–648.
|
[99] |
Hashemi, S.A.; Abediankenari, S. Suppressive effect of fig (ficus carica) latex on esophageal cancer cell proliferation. Acta Fac. Med. Naissensis 2013, 30, 93–96.
|
[100] |
Soltana, H.; Pinon, A.; Limami, Y.; Zaid, Y.; Khalki, L.; Zaid, N.; Salah, D.; Sabitaliyevich, U.Y.; Simon, A.; Liagre, B.; Hammami, M. Antitumoral activity of Ficus carica L. on colorectal cancer cell lines. Cell Mol. Biol. 2019, 65, 6.
|
[101] |
Eteraf-Oskouei, T.; Allahyari, S.; Akbarzadeh-Atashkhosrow, A.; Delazar, A.; Pashaii, M.; Gan, S.H.; Najafi, M. Methanolic extract of Ficus carica Linn. leaves exerts antiangiogenesis effects based on the rat air pouch model of inflammation. Evid. Based Complement. Alternat. Med. 2015, 2015, 1–9.
|
[102] |
Pawlus, A.D.; Cartwright, C.A.; Vijjeswarapu, M.; Liu, Z.; Woltering, E.; Newman, R.A. Anti-angiogenic activity from the fruit latex of Ficus carica (Fig). Planta Med. 2008, 74, PA97.
|
[103] |
Mostafaie, A.; Mansouri, K.; Norouznezhad, A.H.; Mohammadi, M.H.R. Anti-angiogenic activity of Ficus carica latex extract on human umbilical vein endothelial cells. Cell J. 2011, 11, 438–535.
|
[104] |
Nidal, D.; Jaradat, A. Medical plants utilized in Palestinian folk medicine for treatment of diabetes mellitus and cardiac diseases. Al-Aqsa Univ. J. (Natural Sci. Ser. 2005.
|
[105] |
Velnar, T.; Bailey, T.; Smrkolj, V. The wound healing process: an overview of the cellular and molecular mechanisms. J. Int. Med. Res. 2009, 37, 1528–1542.
|
[106] |
Richter, G.; Schwarz, H.P.; Dorner, F.; Turecek, P.L. Activation and inactivation of human factor X by proteases derived from Ficus carica. Br. J. Haematol. 2002, 119, 1042–1051.
|
[107] |
Isabela Avila-Rodríguez, M.; Meléndez-Martínez, D.; Licona-Cassani, C.; Manuel Aguilar-Yañez, J.; Benavides, J.; Lorena Sánchez, M. Practical context of enzymatic treatment for wound healing: a secreted protease approach (Review). Biomed. Rep. 2020, 13, 3–14.
|
[108] |
Singh, M.K.; Bindhu, O.S. Plant latex: A rich source of haemostatic proteases. Herbal Medicine in India. Singapore: Springer Singapore, 2019, 143–153.
|
[109] |
Alwan, A.H.; Al-Bayati, Z.A.F. Effects of milk latex of fig (ficus carica) on 3H-benzo(a)pyrene binding to rat liver microsomal protein. Int. J. Crude Drug Res. 1988, 26, 209–213.
|
[110] |
Borase, H.P.; Patil, C.D.; Suryawanshi, R.K.; Patil, S.V. Ficus carica latex-mediated synthesis of silver nanoparticles and its application as a chemophotoprotective agent. Appl. Biochem. Biotechnol. 2013, 171, 676–688.
|
[111] |
Nicotra, G.; Vicentini, S.; Mazzolari, A. Ficus carica. Nutrafoods 2010, 9, 27–30.
|
[112] |
Mopuri, R.; Islam, M.S. Antidiabetic and anti-obesity activity of Ficus carica: In vitro experimental studies. Diabetes Metab. 2016, 42, 300.
|
[113] |
Stephen Irudayaraj, S.; Christudas, S.; Antony, S.; Duraipandiyan, V.; Naif Abdullah, A.D.; Ignacimuthu, S. Protective effects of Ficus carica leaves on glucose and lipids levels, carbohydrate metabolism enzymes and β-cells in type 2 diabetic rats. Pharm. Biol. 2017, 55, 1074–1081.
|
[114] |
Bhat, M.Z.A.; Ali, D.M.; Mir, S.R. Anti-diabetic activity of Ficus carica L. stem barks and isolation of two new flavonol esters from the plant by using spectroscopical techniques. Asian J. Biomed. Pharm. Sci. 2013, 3, 22–28.
|
[115] |
Shah, M.A.; Mir, S.A.; Paray, M.A. Plant proteases as milk-clotting enzymes in cheesemaking: a review. Dairy Sci. Technol. 2014, 94, 5–16.
|
[116] |
Badgujar, S.B.; Mahajan, R.T. Proteolytic enzymes of some laticiferous plants belonging to Khandesh region of Maharashtra, India. J. Pharm. Res. 2009, 2, 1434–1437.
|
[117] |
Öner, M.D.; Akar, B. Separation of the proteolytic enzymes from fig tree latex and its utilization in Gaziantep cheese production. LWT Food Sci. Technol. 1993, 26, 318–321.
|
[118] |
Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J. Adv. Res. 2016, 7, 17–28.
|
[119] |
Some, S.; Sarkar, B.; Biswas, K.; Jana, T.K.; Bhattacharjya, D.; Dam, P.; Mondal, R.; Kumar, A.; Deb, A.K.; Sadat, A.; Saha, S.M.; Kati, A.; Ocsoy, I.; Franco, O.L.; Mandal, A.; Mandal, S.; Mandal, A.K.; İnce, İ.A. Bio-molecule functionalized rapid one-pot green synthesis of silver nanoparticles and their efficacy toward the multidrug resistant (MDR) gut bacteria of silkworms (Bombyx mori). RSC Adv. 2020, 10, 22742–22757.
|
[120] |
Son, J.H.; Jin, H.; You, H.S.; Shim, W.H.; Kim, J.M.; Kim, G.W.; Kim, H.S.; Ko, H.C.; Kim, M.B.; Kim, B.S. Five cases of phytophotodermatitis caused by fig leaves and relevant literature review. Ann. Dermatol. 2017, 29, 86.
|
[121] |
Derraik, J.G.; Rademaker, M. Phytophotodermatitis caused by contact with a fig tree (Ficus carica). N Z Med. J. 2007, 120, U2658.
|
[122] |
Micali, G.; Nasca, M.R.; Musumeci, M.L. Severe phototoxic reaction secondary to the application of a fig leaves’ decoction used as a tanning agent. Contact Dermat. 1995, 33, 212–213.
|
[123] |
Imen, M.S.; Ahmadabadi, A.; Tavousi, S.H.; Sedaghat, A. The curious cases of burn by fig tree leaves. Indian J. Dermatol. 2019, 64, 71–73.
|
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||