[1] Edgar, J.Y.C.; Wang, H. Introduction for design of nanoparticle based drug delivery systems. Curr. Pharm. Des. 2017, 23, 2108-2112.
[2] Datta, P.; Ray, S. Nanoparticulate formulations of radiopharmaceuticals: Strategy to improve targeting and biodistribution properties. J. Label. Compd. Radiopharm. 2020, 63, 333-355.
[3] Avramović, N.; Mandić, B.; Savić-Radojević, A.; Simić, T. Polymeric nanocarriers of drug delivery systems in cancer therapy. Pharmaceutics. 2020, 12, 298.
[4] van Sluis, R.; Bhujwalla, Z.M.; Raghunand, N.; Ballesteros, P.; Alvarez, J.; Cerdán, S.; Galons, J.P.; Gillies, R.J. In vivo imaging of extracellular pH using 1H MRSI. Magn. Reson. Med. 1999, 41, 743-750.
[5] Mellman, I.; Fuchs, R.; Helenius, A. Acidification of the endocytic and exocytic pathways. Annu. Rev. Biochem. 1986, 55, 663-700.
[6] Zou, Y.; Zhou, Y.H.; Jin, Y.; He, C.Y.; Deng, Y.Q.; Han, S.D.; Zhou, C.H.; Li, X.R.; Zhou, Y.X.; Liu, Y. Synergistically enhanced antimetastasis effects by honokiol-loaded pH-sensitive polymer-doxorubicin conjugate micelles. ACS Appl. Mater. Interfaces. 2018, 10, 18585-18600.
[7] Wang, Z.Q.; Li, X.R.; Wang, D.S.; Zou, Y.; Qu, X.Y.; He, C.Y.; Deng, Y.Q.; Jin, Y.; Zhou, Y.H.; Zhou, Y.X.; Liu, Y. Concurrently suppressing multidrug resistance and metastasis of breast cancer by co-delivery of paclitaxel and honokiol with pH-sensitive polymeric micelles. Acta Biomater. 2017, 62, 144-156.
[8] Wang, D.S.; Zhou, Y.X.; Li, X.R.; Qu, X.Y.; Deng, Y.Q.; Wang, Z.Q.; He, C.Y.; Zou, Y.; Jin, Y.G.; Liu, Y. Mechanisms of pH-sensitivity and cellular internalization of PEOz-b-PLA micelles with varied hydrophilic/hydrophobic ratios and intracellular trafficking routes and fate of the copolymer. ACS Appl. Mater. Interfaces. 2017, 9, 6930.
[9] Gao, Y.J.; Li, Y.F.; Li, Y.S.; Yuan, L.; Zhou, Y.X.; Li, J.W.; Zhao, L.; Zhang, C.; Li, X.R.; Liu, Y. PSMA-mediated endosome escape-accelerating polymeric micelles for targeted therapy of prostate cancer and the real time tracing of their intracellular trafficking. Nanoscale. 2015, 7, 597-612.
[10] Alzhrani, R.; Alsaab, H.O.; Petrovici, A.; Bhise, K.; Vanamala, K.; Sau, S.; Krinock, M.J.; Iyer, A.K. Improving the therapeutic efficiency of noncoding RNAs in cancers using targeted drug delivery systems. Drug Discov. Today. 2020, 25, 718-730.
[11] Muhamad, N.; Plengsuriyakarn, T.; Na-Bangchang, K. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: a systematic review. Int. J. Nanomed. 2018, 13, 3921-3935
[12] Carron, P.M.; Crowley, A.; O'Shea, D.; McCann, M.; Howe, O.; Hunt, M.; Devereux, M. Targeting the folate receptor: improving efficacy in inorganic medicinal chemistry. Curr. Med. Chem. 2018, 25, 2675-2708.
[13] Chen, Q.S.; Meng, X.J.; McQuade, P.; Rubins, D.; Lin, S.A.; Zeng, Z.Z.; Haley, H.; Miller, P.; González Trotter, D.; Low, P.S. Folate-PEG-NOTA-Al18F: a new folate based radiotracer for PET imaging of folate receptor-positive tumors. Mol. Pharmaceutics. 2017, 14, 4353-4361.
[14] Jin, Y.; Liu, Q.; Zhou, C.H.; Hu, X.P.; Wang, L.Q.; Han, S.D.; Zhou, Y.H.; Liu, Y. Intestinal oligopeptide transporter PepT1-targeted polymeric micelles for further enhancing the oral absorption of water-insoluble agents. Nanoscale. 2019, 11, 21433-21448.
[15] He, C.Y.; Jin, Y.; Deng, Y.Q.; Zou, Y.; Han, S.D.; Zhou, C.H.; Zhou, Y.H.; Liu, Y. Efficient oral delivery of poorly water-soluble drugs using carnitine/organic cation transporter 2-mediated polymeric micelles. ACS Biomater. Sci. Eng. 2020, 6, 2146-2158.
[16] Perrault, S.D.; Walkey, C.; Jennings, T.; Fischer, H.C.; Chan, W.C.W. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 2009, 9, 1909-1915.
[17] Duan, X.; Li, Y. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small. 2013, 9, 1521-1532
[18] Yang, F.; Teves, S.S.; Kemp, C.J.; Henikoff, S. Doxorubicin, DNA torsion, and chromatin dynamics. Biochim. et Biophys. Acta (BBA) Rev. Cancer. 2014, 1845, 84-89. |