[1] Karas, M.; Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10, 000 daltons. Anal. Chem. 1988, 60, 2299-2301.
[2] Fenselau, C.; Demirev, P.A. Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom. Rev. 2001, 20, 157-171.
[3] Cornett, D.S.; Reyzer, M.L.; Chaurand, P.; Caprioli, R.M. MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat. Methods. 2007, 4, 828.
[4] Harvey, D.J. Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass Spectrom. Rev. 1999, 18, 349-450.
[5] Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T.; Matsuo, T. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 1988, 2, 151-153.
[6] Sunner, J.; Dratz, E.; Chen, Y.C. Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions. Anal. Chem. 1995, 67, 4335-4342.
[7] Chiang, C. K.; Chen, W. T.; Chang, H. T. Nanoparticle-Based Mass Spectrometry for The Analysis of Biomolecules. Chem. Soc. Rev. 2011, 40, 1269-1281.
[8] Abdelhamid, H.N. Nanoparticle assisted laser desorption/ionization mass spectrometry for small molecule analytes. Microchim. Acta. 2018, 185, 1-16.
[9] He, H.; Guo, Z.C.; Wen, Y.R.; Xu, S.X.; Liu, Z. Recent advances in nanostructure/nanomaterial-assisted laser desorption/ionization mass spectrometry of low molecular mass compounds. Anal. Chim. Acta. 2019, 1090, 1-22.
[10] Pilolli, R.; Palmisano, F.; Cioffi, N. Gold nanomaterials as a new tool for bioanalytical applications of laser desorption ionization mass spectrometry. Anal. Bioanal. Chem. 2012, 402, 601-623.
[11] Sekuła, J.; Nizioł, J.; Rode, W.; Ruman, T. Silver nanostructures in laser desorption/ionization mass spectrometry and mass spectrometry imaging. Anal. 2015, 140, 6195-6209.
[12] Wang, J.; Jie, M.S.; Li, H.F.; Lin, L.Y.; He, Z.Y.; Wang, S.Q.; Lin, J.M. Gold nanoparticles modified porous silicon chip for SALDI-MS determination of glutathione in cells. Talanta. 2017, 168, 222-229.
[13] Hong, Y.Y.; Zhan, Q.L.; Pu, C.L.; Sheng, Q.Y.; Zhao, H.L.; Lan, M.B. Highly efficient enrichment of phosphopeptides from HeLa cells using hollow magnetic macro/mesoporous TiO2 nanoparticles. Talanta. 2018, 187, 223-230.
[14] Fu, C.W.; Lirio, S.; Shih, Y.H.; Liu, W.L.; Lin, C.H.; Huang, H.Y. The cooperativity of Fe3O4 and metal-organic framework as multifunctional nanocomposites for laser desorption ionization process. Chem. A Eur. J. 2018, 24, 9598-9605.
[15] He, H.; Wen, Y.R.; Guo, Z.C.; Li, P.F.; Liu, Z. Efficient mass spectrometric dissection of glycans via gold nanoparticle-assisted in-source cation adduction dissociation. Anal. Chem. 2019, 91, 8390-8397.
[16] McLean, J.A.; Stumpo, K.A.; Russell, D.H. Size-selected (2-10 nm) gold nanoparticles for matrix assisted laser desorption ionization of peptides. J. Am. Chem. Soc. 2005, 127, 5304-5305.
[17] Xu, Q.; Tian, R.; Lu, C.; Li, H.F. Monodispersed Ag nanoparticle in layered double hydroxides as matrix for laser desorption/ionization mass spectrometry. ACS Appl. Mater. Interfaces. 2018, 10, 44751-44759.
[18] Huang, L.; Wan, J.J.; Wei, X.; Liu, Y.; Huang, J.Y.; Sun, X.M.; Zhang, R.; Gurav, D.D.; Vedarethinam, V.; Li, Y.; Chen, R.P.; Qian, K. Plasmonic silver nanoshells for drug and metabolite detection. Nat. Commun. 2017, 8, 220.
[19] Sun, X.M.; Huang, L.; Zhang, R.; Xu, W.; Huang, J.Y.; Gurav, D.D.; Vedarethinam, V.; Chen, R.P.; Lou, J.T.; Wang, Q.; Wan, J.J.; Qian, K. Metabolic fingerprinting on a plasmonic gold chip for mass spectrometry based in vitro diagnostics. ACS Cent. Sci. 2018, 4, 223-229.
[20] Yang, J.; Wang, R.; Huang, L.; Zhang, M.J.; Niu, J.Y.; Bao, C.D.; Shen, N.; Dai, M.; Guo, Q.; Wang, Q.; Wang, Q.; Fu, Q.; Qian, K. Urine metabolic fingerprints encode subtypes of kidney diseases. Angew. Chem. Int. Ed. 2020, 59, 1703-1710.
[21] Vedarethinam, V.; Huang, L.; Xu, W.; Zhang, R.; Gurav, D.D.; Sun, X.M.; Yang, J.; Chen, R.P.; Qian, K. Detection and inhibition of bacteria on a dual-functional silver platform. Small. 2019, 15, 10.
[22] Ma, W.; Xu, S.T.; Nie, H.G.; Hu, B.Y.; Bai, Y.; Liu, H.W. Bifunctional cleavable probes for in situ multiplexed glycan detection and imaging using mass spectrometry. Chem. Sci. 2019, 10, 2320-2325.
[23] Cang, J.S.; Chen, L.Y.; Lin, Y.S.; Chang, H.T. Detection of metabolites in cells through surface-assisted laser desorption/ionization mass spectrometry. ACS Omega. 2018, 3, 17386-17391.
[24] Chau, S.L.; Tang, H.W.; Ng, K.M. Gold nanoparticles bridging infra-red spectroscopy and laser desorption/ionization mass spectrometry for direct analysis of over-the-counter drug and botanical medicines. Anal. Chim. Acta. 2016, 919, 62-69.
[25] Guinan, T.; Kirkbride, P.; Pigou, P.E.; Ronci, M.; Kobus, H.; Voelcker, N.H. Surface-assisted laser desorption ionization mass spectrometry techniques for application in forensics. Mass Spectrom. Rev. 2015, 34, 627-640.
[26] Cheng, Y.H.; Zhang, Y.; Chau, S.L.; Lai, S.K.M.; Tang, H.W.; Ng, K.M. Enhancement of image contrast, stability, and SALDI-MS detection sensitivity for latent fingerprint analysis by tuning the composition of silver-gold nanoalloys. ACS Appl. Mater. Interfaces. 2016, 8, 29668-29675.
[27] Ding, F.; Qian, Y.N.; Deng, Z.A.; Zhang, J.T.; Zhou, Y.C.; Yang, L.; Wang, F.Y.; Wang, J.P.; Zhou, Z.H.; Shen, J.L. Size-selected silver nanoparticles for MALDI-TOF mass spectrometry of amyloid-beta peptides. Nanoscale. 2018, 10, 22044-22054.
[28] Li, N.; Dou, S.Z.; Feng, L.; Wang, X.Y.; Lu, N. Enriching analyte molecules on tips of superhydrophobic gold nanocones for trace detection with SALDI-MS. Talanta. 2019, 205, 120085.
[29] Wu, Q.; Chu, J.L.; Rubakhin, S.S.; Gillette, M.U.; Sweedler, J.V. Dopamine-modified TiO2 monolith-assisted LDI MS imaging for simultaneous localization of small metabolites and lipids in mouse brain tissue with enhanced detection selectivity and sensitivity. Chem. Sci. 2017, 8, 3926-3938.
[30] Xue, J.J.; Liu, H.H.; Chen, S.M.; Xiong, C.Q.; Zhan, L.P.; Sun, J.; Nie, Z.X. Mass spectrometry imaging of the in situ drug release from nanocarriers. Sci. Adv. 2018, 4, eaat9039.
[31] Kim, Y.; Wang, L.S.; Landis, R.F.; Kim, C.S.; Vachet, R.W.; Rotello, V.M. A layer-by-layer assembled MoS2 thin film as an efficient platform for laser desorption/ionization mass spectrometry analysis of small molecules. Nanoscale. 2017, 9, 10854-10860.
[32] Wang, J.; Liu, Q.; Liang, Y.; Jiang, G.B. Recent progress in application of carbon nanomaterials in laser desorption/ionization mass spectrometry. Anal. Bioanal. Chem. 2016, 408, 2861-2873.
[33] Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183-191.
[34] Dong, X.L.; Cheng, J.S.; Li, J.H.; Wang, Y.S. Graphene as a novel matrix for the analysis of small molecules by MALDI-TOF MS. Anal. Chem. 2010, 82, 6208-6214.
[35] Wang, J.; Cheng, M.T.; Zhang, Z.; Guo, L.Q.; Liu, Q.; Jiang, G.B. An antibody-graphene oxide nanoribbon conjugate as a surface enhanced laser desorption/ionization probe with high sensitivity and selectivity. Chem. Commun. Camb. Engl. 2015, 51, 4619-4622.
[36] Wu, E.H.; Feng, K.; Shi, R.; Lv, R.; Ouyang, F.Z.; Li, S.S.C.; Zhong, J.; Liu, J. Hybrid CuCoO-GO enables ultrasensitive detection of antibiotics with enhanced laser desorption/ionization at nano-interfaces. Chem. Sci. 2019, 10, 257-267.
[37] Sun, J.; Chen, S.M.; Liu, H.H.; Xiong, C.Q.; Wang, J.Y.; Xie, X.B.; Xue, J.J.; Chen, P.L.; Nie, Z.X. Fluorographene nanosheets: a new carbon-based matrix for the detection of small molecules by MALDI-TOF MS. RSC Adv. 2016, 6, 99714-99719.
[38] Wang, Y.W.; Gao, D.; Chen, Y.L.; Hu, G.N.; Liu, H.X.; Jiang, Y.Y. Development of N, S-doped carbon dots as a novel matrix for the analysis of small molecules by negative ion MALDI-TOF MS. RSC Adv. 2016, 6, 79043-79049.
[39] Shi, R.; Dai, X.; Li, W.F.; Lu, F.; Liu, Y.; Qu, H.H.; Li, H.; Chen, Q.Y.; Tian, H.; Wu, E.H.; Wang, Y.; Zhou, R.H.; Lee, S.T.; Lifshitz, Y.; Kang, Z.H.; Liu, J. Hydroxyl-group-dominated graphite dots reshape laser desorption/ionization mass spectrometry for small biomolecular analysis and imaging. ACS Nano. 2017, 11, 9500-9513.
[40] Wu, C.L.; Wang, C.C.; Lai, Y.H.; Lee, H.; Lin, J.D.; Lee, Y.T.; Wang, Y.S. Selective enhancement of carbohydrate ion abundances by diamond nanoparticles for mass spectrometric analysis. Anal. Chem. 2013, 85, 3836-3841.
[41] Wei, J.; Buriak, J.M.; Siuzdak, G. Desorption-ionization mass spectrometry on porous silicon. Nature. 1999, 399, 243.
[42] Guinan, T.; Della Vedova, C.; Kobus, H.; Voelcker, N.H. Mass spectrometry imaging of fingerprint sweat on nanostructured silicon. Chem. Commun. Camb. Engl. 2015, 51, 6088-6091.
[43] Guinan, T.M.; Abdelmaksoud, H.; Voelcker, N.H. Rapid detection of nicotine from breath using desorption ionisation on porous silicon. Chem. Commun. Camb. Engl. 2017, 53, 5224-5226.
[44] Wang, X.Y.; Teng, F.; Wang, Y.L.; Lu, N. Rapid liquid-phase microextraction of analytes from complex samples on superwetting porous silicon for onsite SALDI-MS analysis. Talanta. 2019, 198, 63-70.
[45] Korte, A.R.; Stopka, S.A.; Morris, N.; Razunguzwa, T.; Vertes, A. Large-scale metabolite analysis of standards and human serum by laser desorption ionization mass spectrometry from silicon nanopost arrays. Anal. Chem. 2016, 88, 8989-8996.
[46] Tsao, C.W.; Yang, Z.J. High sensitivity and high detection specificity of gold-nanoparticle-grafted nanostructured silicon mass spectrometry for glucose analysis. ACS Appl. Mater. Interfaces. 2015, 7, 22630-22637.
[47] Gan, J.R.; Wei, X.; Li, Y.X.; Wu, J.; Qian, K.; Liu, B.H. Designer SiO2@Au nanoshells towards sensitive and selective detection of small molecules in laser desorption ionization mass spectrometry. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 1715-1723.
[48] Amin, M.O.; Al-Hetlani, E. Tailoring the surface chemistry of SiO2-based monoliths to enhance the selectivity of SALDI-MS analysis of small molecules. Talanta. 2019, 200, 458-467.
[49] Férey, G. Hybrid porous solids: past, present, future. Chem. Soc. Rev. 2008, 37, 191-214.
[50] Ding, S.Y.; Wang, W. Covalent organic frameworks (COFs): from design to applications. Chem. Soc. Rev. 2013, 42, 548-568.
[51] Shih, Y.H.; Chien, C.H.; Singco, B.; Hsu, C.L.; Lin, C.H.; Huang, H.Y. Metal-organic frameworks: new matrices for surface-assisted laser desorption-ionization mass spectrometry. Chem. Commun. Camb. Engl. 2013, 49, 4929-4931.
[52] Fu, C.P.; Lirio, S.; Liu, W.L.; Lin, C.H.; Huang, H.Y. A novel type of matrix for surface-assisted laser desorption-ionization mass spectrometric detection of biomolecules using metal-organic frameworks. Anal. Chim. Acta. 2015, 888, 103-109.
[53] Lin, Z.A.; Bian, W.; Zheng, J.N.; Cai, Z.W. Magnetic metal-organic framework nanocomposites for enrichment and direct detection of small molecules by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Chem. Commun. Camb. Engl. 2015, 51, 8785-8788.
[54] Chen, L.F.; Ou, J.J.; Wang, H.W.; Liu, Z.S.; Ye, M.L.; Zou, H.F. Tailor-made stable Zr(IV)-based metal-organic frameworks for laser desorption/ionization mass spectrometry analysis of small molecules and simultaneous enrichment of phosphopeptides. ACS Appl. Mater. Interfaces. 2016, 8, 20292-20300.
[55] Ma, W.; Xu, S.T.; Ai, W.P.; Lin, C.; Bai, Y.; Liu, H.W. A flexible and multifunctional metal-organic framework as a matrix for analysis of small molecules using laser desorption/ionization mass spectrometry. Chem. Commun. 2019, 55, 6898-6901.
[56] Pei, C.C.; Liu, C.; Wang, Y.; Cheng, D.; Li, R.X.; Shu, W.K.; Zhang, C.Q.; Hu, W.L.; Jin, A.H.; Yang, Y.N.; Wan, J.J. FeOOH@Metal-organic framework core-satellite nanocomposites for the serum metabolic fingerprinting of gynecological cancers. Angew. Chemie Int. Ed. 2020, 59, 10831-10835.
[57] Feng, D.; Xia, Y. Covalent organic framework as efficient desorption/ionization matrix for direct detection of small molecules by laser desorption/ionization mass spectrometry. Anal. Chimica Acta. 2018, 1014, 58-63.
[58] Hu, K.; Lv, Y.; Ye, F.G.; Chen, T.; Zhao, S.L. Boric-acid-functionalized covalent organic framework for specific enrichment and direct detection of cis-diol-containing compounds by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem. 2019, 91, 6353-6362. |