中国药学(英文版) ›› 2025, Vol. 34 ›› Issue (11): 979-988.DOI: 10.5246/jcps.2025.11.073
• 【综述】 •
收稿日期:2025-07-20
修回日期:2025-08-14
接受日期:2025-09-17
出版日期:2025-12-02
发布日期:2025-12-02
通讯作者:
靳怡然
Weiwei Xie, Ming Wang, Yuqian Zhang, Yiran Jin*(
)
Received:2025-07-20
Revised:2025-08-14
Accepted:2025-09-17
Online:2025-12-02
Published:2025-12-02
Contact:
Yiran Jin
摘要:
硫酸吲哚酚(IS)是一种蛋白质结合型吲哚毒素, 是现在国内外研究尿毒症毒素与肾损伤的主要物质。3-IS可以通过上调TGF-β1、TIMP-1、pro-α1 (I)等表达, 诱导自由基产生, 降低超氧化物清除活性, 诱导肾小管上皮细胞死亡使肾损伤程度加重。随着代谢组学研究的不断深入, IS可能成为一种新的肾脏生物标志物。本文通过检索中国知网、PubMed等数据库, 对近十年国内外有关硫酸吲哚酚在肾损伤疾病中的应用研究进展进行综述, 旨在为临床的个体化治疗提供帮助, 提高患者用药的安全性和有效性。
Supporting:
解伟伟, 王铭, 张玉倩, 靳怡然. 硫酸吲哚酚在肾损伤疾病中的应用研究进展[J]. 中国药学(英文版), 2025, 34(11): 979-988.
Weiwei Xie, Ming Wang, Yuqian Zhang, Yiran Jin. Advancements in the therapeutic application of indoxyl sulfate for kidney injury management[J]. Journal of Chinese Pharmaceutical Sciences, 2025, 34(11): 979-988.
| [1] |
Schreiner, G.E.; Maher, J.F. Uremia: biochemistry, pathogenesis and treatment. Springfield, IL, USA: Charles C Thomas Publisher. 1961.
|
| [2] |
Meyer, T.W.; Hostetter, T.H. Uremic solutes from colon microbes. Kidney Int. 2012, 81, 949–954.
|
| [3] |
Zhang, L.S.; Davies, S.S. Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions. Genome Med. 2016, 8, 46.
|
| [4] |
Duranton, F.; Cohen, G.; De Smet, R.; Rodriguez, M.; Jankowski, J.; Vanholder, R.; Argiles, A. Normal and pathologic concentrations of uremic toxins. J. Am. Soc. Nephrol. 2012, 23, 1258–1270.
|
| [5] |
Meyer, T.W.; Hostetter, T.H. Uremia. N Engl. J. Med. 2007, 357, 1316–1325.
|
| [6] |
Vanholder, R.; De Smet, R.; Glorieux, G.; Argilés, A.; Baurmeister, U.; Brunet, P.; Clark, W.; Cohen, G.; De Deyn, P.P.; Deppisch, R.; Descamps-Latscha, B.; Henle, T.; Jörres, A.; Lemke, H.D.; Massy, Z.A.; Passlick-Deetjen, J.; Rodriguez, M.; Stegmayr, B.; Stenvinkel, P.; Tetta, C.; Wanner, C.; Zidek, W. Review on uremic toxins: Classification, concentration, and interindividual variability. Kidney Int. 2003, 63, 1934–1943.
|
| [7] |
Sakai, T.; Maruyama, T.; Imamura, H.; Shimada, H.; Otagiri, M. Mechanism of stereoselective serum binding of ketoprofen after hemodialysis. J. Pharmacol. Exp. Ther. 1996, 278, 786–792.
|
| [8] |
Bourlioux, P.; Koletzko, B.; Guarner, F.; Braesco, V. The intestine and its microflora are partners for the protection of the host: report on the Danone Symposium "The Intelligent Intestine," held in Paris, June 14, 2002. Am. J. Clin. Nutr. 2003, 78, 675–683.
|
| [9] |
Hooper, L.V.; Gordon, J.I. Commensal host-bacterial relationships in the gut. Science. 2001, 292, 1115–1118.
|
| [10] |
Savage, D.C. Gastrointestinal microflora in mammalian nutrition. Annu. Rev. Nutr. 1986, 6, 155–178.
|
| [11] |
Aronov, P.A.; Luo, F.J.; Plummer, N.S.; Quan, Z.; Holmes, S.; Hostetter, T.H.; Meyer, T.W. Colonic contribution to uremic solutes. J. Am. Soc. Nephrol. 2011, 22, 1769–1776.
|
| [12] |
Vaziri, N.D.; Yuan, J.; Norris, K. Role of urea in intestinal barrier dysfunction and disruption of epithelial tight junction in chronic kidney disease. Am. J. Nephrol. 2013, 37, 1–6.
|
| [13] |
Wang, L.; Sweet, D.H. Renal organic anion transporters (SLC22 family): expression, regulation, roles in toxicity, and impact on injury and disease. AAPS J. 2013, 15, 53–69.
|
| [14] |
Wu, W.; Bush, K.T.; Nigam, S.K. Key role for the organic anion transporters, OAT1 and OAT3, in the in vivo handling of uremic toxins and solutes. Sci. Rep. 2017, 7, 4939.
|
| [15] |
Poesen, R.; Viaene, L.; Verbeke, K.; Claes, K.; Bammens, B.; Sprangers, B.; Naesens, M.; Vanrenterghem, Y.; Kuypers, D.; Evenepoel, P.; Meijers, B. Renal clearance and intestinal generation of p-cresyl sulfate and indoxyl sulfate in CKD. Clin. J. Am. Soc. Nephrol. 2013, 8, 1508–1514.
|
| [16] |
Enomoto, A.; Takeda, M.; Tojo, A.; Sekine, T.; Cha, S.H.; Khamdang, S.; Takayama, F.; Aoyama, I.; Nakamura, S.; Endou, H.; Niwa, T. Role of organic anion transporters in the tubular transport of indoxyl sulfate and the induction of its nephrotoxicity. J. Am. Soc. Nephrol. 2002, 13, 1711–1720.
|
| [17] |
Motojima, M.; Hosokawa, A.; Yamato, H.; Muraki, T.; Yoshioka, T. Uremic toxins of organic anions up-regulate PAI-1 expression by induction of NF-κB and free radical in proximal tubular cells. Kidney Int. 2003, 63, 1671–1680.
|
| [18] |
Gelasco, A.K.; Raymond, J.R. Indoxyl sulfate induces complex redox alterations in mesangial cells. Am. J. Physiol. Ren. Physiol. 2006, 290, F1551–F1558.
|
| [19] |
Owada, S.; Goto, S.; Bannai, K.J.; Hayashi, H.; Nishijima, F.; Niwa, T. Indoxyl sulfate reduces superoxide scavenging activity in the kidneys of normal and uremic rats. Am. J. Nephrol. 2008, 28, 446–454.
|
| [20] |
Liu, Y.H. New insights into epithelial-mesenchymal transition in kidney fibrosis. J. Am. Soc. Nephrol. 2010, 21, 212–222.
|
| [21] |
Loeffler, I.; Wolf, G. Transforming growth factor-β and the progression of renal disease. Nephrol. Dial. Transplant. 2014, 29, i37–i45.
|
| [22] |
Menn-Josephy, H.; Lee, C.S.; Nolin, A.; Christov, M.; Rybin, D.V.; Weinberg, J.M.; Henderson, J.; Bonegio, R.; Havasi, A. Renal interstitial fibrosis: an imperfect predictor of kidney disease progression in some patient cohorts. Am. J. Nephrol. 2016, 44, 289–299.
|
| [23] |
Miyajima, A.; Chen, J.; Lawrence, C.; Ledbetter, S.; Soslow, R.A.; Stern, J.; Jha, S.; Pigato, J.; Lemer, M.L.; Poppas, D.P.; Vaughan, E.D. Jr, Felsen, D. Antibody to transforming growth factor-β ameliorates tubular apoptosis in unilateral ureteral obstruction. Kidney Int. 2000, 58, 2301–2313.
|
| [24] |
Isaka, Y. Targeting TGF-β signaling in kidney fibrosis. Int. J. Mol. Sci. 2018, 19, 2532.
|
| [25] |
Miyazaki, T.; Ise, M.; Seo, H.; Niwa, T. Indoxyl sulfate increases the gene expressions of TGF-beta 1, TIMP-1 and pro-alpha 1(I) collagen in uremic rat kidneys. Kidney Int. Suppl. 1997, 62, S15–S22.
|
| [26] |
Milanesi, S.; Garibaldi, S.; Saio, M.; Ghigliotti, G.; Picciotto, D.; Ameri, P.; Garibotto, G.; Barisione, C.; Verzola, D. Indoxyl sulfate induces renal fibroblast activation through a targetable heat shock protein 90-dependent pathway. Oxid. Med. Cell Longev. 2019, 2019, 2050183.
|
| [27] |
Sancho-Martínez, S.M.; López-Novoa, J.M.; López-Hernández, F.J. Pathophysiological role of different tubular epithelial cell death modes in acute kidney injury. Clin. Kidney J. 2015, 8, 548–559.
|
| [28] |
Ferenbach, D.A.; Bonventre, J.V. Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat. Rev. Nephrol. 2015, 11, 264–276.
|
| [29] |
Ellis, R.J.; Small, D.M.; Ng, K.L.; Vesey, D.A.; Vitetta, L.; Francis, R.S.; Gobe, G.C.; Morais, C. Indoxyl sulfate induces apoptosis and hypertrophy in human kidney proximal tubular cells. Toxicol. Pathol. 2018, 46, 449–459.
|
| [30] |
Kim, S.H.; Yu, M.-A.; Ryu, E.S.; Jang, Y.H.; Kang, D.H. Indoxyl sulfate-induced epithelial-to-mesenchymal transition and apoptosis of renal tubular cells as novel mechanisms of progression of renal disease. Lab. Investig. 2012, 92, 488–498.
|
| [31] |
Bolati, D.; Shimizu, H.; Yisireyili, M.; Nishijima, F.; Niwa, T. Indoxyl sulfate, a uremic toxin, downregulates renal expression of Nrf2 through activation of NF-κB. BMC Nephrol. 2013, 14, 56.
|
| [32] |
Schulman, G.; Agarwal, R.; Acharya, M.; Berl, T.; Blumenthal, S.; Kopyt, N. A multicenter, randomized, double-blind, placebo-controlled, dose-ranging study of AST-120 (kremezin) in patients with moderate to severe CKD. Am. J. Kidney Dis. 2006, 47, 565–577.
|
| [33] |
Aoyama, I.; Shimokata, K.; Niwa, T. An oral adsorbent downregulates renal expression of genes that promote interstitial inflammation and fibrosis in diabetic rats. Nephron. 2002, 92, 635–651.
|
| [34] |
Aoyama, I.; Shimokata, K.; Niwa, T. Oral adsorbent AST-120 ameliorates interstitial fibrosis and transforming growth factor-β1 expression in spontaneously diabetic (OLETF) rats. Am. J. Nephrol. 2000, 20, 232–241.
|
| [35] |
Zou, C.; Lu, F.H.; Wu, Y.C.; Lin, Q.Z.; Liu, X.S. Indoxyl sulfate serum level in chronic renal failure patients detected using fluorescence-HPLC. Kidney Res. Clin. Pract. 2012, 31, A26.
|
| [36] |
Al Za’abi, M.; Ali, B.; Al Toubi, M. HPLC-fluorescence method for measurement of the uremic toxin indoxyl sulfate in plasma. J. Chromatogr. Sci. 2013, 51, 40–43.
|
| [37] |
Lin, C.N.; Wu, I.W.; Huang, Y.F.; Peng, S.Y.; Huang, Y.C.; Ning, H.C. Measuring serum total and free indoxyl sulfate and p-cresyl sulfate in chronic kidney disease using UPLC-MS/MS. J. Food Drug Anal. 2019, 27, 502–509.
|
| [38] |
Torii, T.; Kanemitsu, K.; Wada, T.; Itoh, S.; Kinugawa, K.; Hagiwara, A. Measurement of short-chain fatty acids in human faeces using high-performance liquid chromatography: specimen stability. Ann. Clin. Biochem. 2010, 47, 447–452.
|
| [39] |
Ali, I.; Gupta, V.K.; Aboul-Enein, H.Y.; Hussain, A. Hyphenation in sample preparation: Advancement from the micro to the nano world. J. Sep. Sci. 2008, 31, 2040–2053.
|
| [40] |
ALOthman, Z.A.; ALanazi, A.G.; Ali, I. A comparative and simultaneous analysis of indoxyl sulfate and sodium butyrate in human plasma by SPE and HPLC methods for kidney patients. J. Chromatogr. B. 2020, 1159, 122356.
|
| [41] |
Fushimi, Y.; Tatebe, J.; Okuda, Y.; Ishii, T.; Ujiie, S.; Morita, T. Performance evaluation of an indoxyl sulfate assay kit "NIPRO". Clin. Chem. Lab. Med. 2019, 57, 1770–1776.
|
| [42] |
Pretorius, C.J.; McWhinney, B.C.; Sipinkoski, B.; Johnson, L.A.; Rossi, M.; Campbell, K.L.; Ungerer, J.P.J. Reference ranges and biological variation of free and total serum indoxyl- and p-cresyl sulphate measured with a rapid UPLC fluorescence detection method. Clin. Chim. Acta. 2013, 419, 122–126.
|
| [43] |
Shu, C.; Chen, X.J.; Xia, T.Y.; Zhang, F.; Gao, S.H.; Chen, W.S. LC–MS/MS method for simultaneous determination of serum p-cresyl sulfate and indoxyl sulfate in patients undergoing peritoneal dialysis. Biomed. Chromatogr. 2016, 30, 1782–1788.
|
| [44] |
Vinge, E.; Lindergård, B.; Nilsson-Ehle, P.; Grubb, A. Relationships among serum cystatin C, serum creatinine, lean tissue mass and glomerular filtration rate in healthy adults. Scand. J. Clin. Lab. Investig. 1999, 59, 587–592.
|
| [45] |
Schwingshackl, L.; Hoffmann, G. Comparison of high vs. normal/low protein diets on renal function in subjects without chronic kidney disease: a systematic review and meta-analysis. PLoS One. 2014, 9, e97656.
|
| [46] |
Wu, I.W.; Hsu, K.H.; Lee, C.C.; Sun, C.Y.; Hsu, H.J.; Tsai, C.J.; Tzen, C.Y.; Wang, Y.C.; Lin, C.Y.; Wu, M.S. P-Cresyl sulphate and indoxyl sulphate predict progression of chronic kidney disease. Nephrol. Dial. Transplant. 2011, 26, 938–947.
|
| [1] | 王番, 李锐莉, 王文军, 周晓燕, 刘美佑, 赵瑾怡, 文爱东, 王婧雯, 贾艳艳. α-乳香酸通过抑制TLR4介导的炎症通路改善急性肾损伤[J]. 中国药学(英文版), 2023, 32(7): 539-550. |
| [2] | 李成, 朱玉华, 孙晓旻, 许静, 熊丹, 王娟, 高新庐, 陈绪龙. 基于网络药理学和分子对接技术探讨雷公藤致急性肾损伤的多重作用机制[J]. 中国药学(英文版), 2021, 30(7): 556-569. |
| [3] | 陈倩, 赵旭阳, 宋宇靖, 李少一, 雷婉钰, 马维宁, 黄卓. 鉴定用于评估切除性癫痫手术后癫痫发作情况的血清生物标志物[J]. 中国药学(英文版), 2020, 29(8): 528-541. |
| [4] | 程笑, 杨滢霖, 李伟瀚, 刘漫, 张姗姗, 王月华, 杜冠华. 秦皮甲素减轻脂多糖刺激小鼠急性肾损伤和炎症反应的作用及其机制[J]. 中国药学(英文版), 2020, 29(5): 322-332. |
| [5] | 何鹿玲, 龚琴, 余煊, 王木兰, 翁莎莎, 雷帆, 高红伟, 罗颖颖, 冯育林, 杨世林, 李俊, 杜力军. 腺嘌呤所致大鼠肾损伤的蛋白质组变化及其白头翁皂苷B4的调节作用[J]. 中国药学(英文版), 2019, 28(1): 10-20. |
| [6] | 李丹丹, 熊歆, 白琼, 杨文领, 赵荣生, 张爱华. LC-MS/MS法测定尿二棕榈酰磷脂酰胆碱含量的方法学建立及其作为肾损伤标志物的研究[J]. 中国药学(英文版), 2015, 24(2): 73-79. |
| [7] | 付嫣然, 杨农, 李月琴, 赵友云, 叶索夫, 刘丽慧, 曾慧慧. 硫氧还蛋白还原酶作为新型生物标志物在乳腺癌诊断和治疗中的价值[J]. 中国药学(英文版), 2014, 23(10): 711-715. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||