[1] |
Menon, S. Bioinformatics approaches to understand gene looping in the human genome. EPRA Int. J. Res. Dev. IJRD. 2021, 6, 170–173.
|
[2] |
Orlov, Y.L.; Baranova, A.V.; Tatarinova, T.V. Bioinformatics methods in medical genetics and genomics. Int. J. Mol. Sci. 2020, 21, E6224.
|
[3] |
Eng, J.K.; Deutsch, E.W. Extending Comet for global amino acid variant and post‐translational modification analysis using the PSI extended FASTA format. Proteomics. 2020, 20, 1900362.
|
[4] |
Afzal, M.; Riazul Islam, S.M.; Hussain, M.; Lee, S. Precision medicine informatics: principles, prospects, and challenges. IEEE Access. 2020, 8, 13593–13612.
|
[5] |
Gauthier, J.; Vincent, A.T.; Charette, S.J.; Derome, N. A brief history of bioinformatics. Brief Bioinform. 2019, 20, 1981–1996.
|
[6] |
Sangeda, R.Z.; Mwakilili, A.D.; Masamu, U.; Nkya, S.; Mwita, L.A.; Massawe, D.P.; Lyantagaye, S.L.; Makani, J. A Baseline evaluation of bioinformatics capacity in Tanzania reveals areas for training. 2021, 6, 665313.
|
[7] |
National Human Genome Research Institute. DNA sequencing costs: Data (2018). This article can be found online at https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data.
|
[8] |
Liu, M.Y.; Liu, J.; Chen, Y.H.; Wang, M.; Chen, H.; Zheng, Q.H. AHNG: Representation learning on attributed heterogeneous network. Inf. Fusion. 2019, 50, 221–230.
|
[9] |
Vascon, S.; Frasca, M.; Tripodi, R.; Valentini, G.; Pelillo, M. Protein function prediction as a graph-transduction game. Pattern Recognit. Lett. 2020, 134, 96–105.
|
[10] |
Zhang, Z.C.; Zhang, X.F.; Wu, M.; Ou-Yang, L.; Zhao, X.M.; Li, X.L. A graph regularized generalized matrix factorization model for predicting links in biomedical bipartite networks. Bioinformatics. 2020, 36, 3474–3481.
|
[11] |
Wang, L.; You, Z.H.; Li, Y.M.; Zheng, K.; Huang, Y.A. GCNCDA: a new method for predicting circRNA-disease associations based on Graph Convolutional Network Algorithm. PLoS Comput. Biol. 2020, 16, e1007568.
|
[12] |
Zong, N.S.; Wong, R.S.N.; Yu, Y.; Wen, A.; Huang, M.; Li, N. Drug–target prediction utilizing heterogeneous bio-linked network embeddings. Brief. Bioinform. 2021, 22, 568–580.
|
[13] |
Yi, H.C.; You, Z.H.; Huang, D.S.; Guo, Z.H.; Chan, K.C.C.; Li, Y.M, Learning representations to predict intermolecular interactions on large-scale heterogeneous molecular association network. Iscience. 2020, 23, 101261.
|
[14] |
Cen, Y.K.; Zou, X.; Zhang, J.W.; Yang, H.X.; Zhou, J.R.; Tang, J. Representation learning for attributed multiplex heterogeneous network. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019, 1358–1368.
|
[15] |
Schaduangrat, N.; Lampa, S.; Simeon, S.; Gleeson, M.P.; Spjuth, O.; Nantasenamat, C. Towards reproducible computational drug discovery. J. Cheminf. 2020, 12, 9.
|
[16] |
Javed, M. CADD and molecular dynamic simulations: potential impacts to conventional medicines. Comb. Chem. High Throughput Screen. 2022, 25, 658–659.
|
[17] |
Pinzi, L.C.; Rastelli, G. Molecular docking: shifting paradigms in drug discovery. Int. J. Mol. Sci. 2019, 20, 4331.
|
[18] |
Rudrapal, M.; Chetia, D. Virtual screening, molecular docking and QSAR studies in drug discovery and development programme. J. Drug Delivery Ther. 2020, 10, 225–233.
|
[19] |
Zhao, L.L.; Ciallella, H.L.; Aleksunes, L.M.; Zhu, H. Advancing computer-aided drug discovery (CADD) by big data and data-driven machine learning modeling. Drug Discov. Today. 2020, 25, 1624–1638.
|
[20] |
Namasudra, S. Data access control in the cloud computing environment for bioinformatics. Int. J. Appl. Res. Bioinform. 2021, 11, 40–50.
|
[21] |
Puertas-Martín, S.; Banegas-Luna, A.J.; Paredes-Ramos, M.; Redondo, J.L.; Ortigosa, P.M.; Brovarets’, O.O.; Pérez-Sánchez, H. Is high performance computing a requirement for novel drug discovery and how will this impact academic efforts? Expert Opin. Drug Discov. 2020, 15, 981–985.
|
[22] |
Wang, Y.L.; Wang, F.; Shi, X.X.; Jia, C.Y.; Wu, F.X.; Hao, G.F.; Yang, G.F. Cloud 3D-QSAR: a web tool for the development of quantitative structure-activity relationship models in drug discovery. Brief Bioinform. 2021, 22, bbaa276.
|
[23] |
Olğaç, A.; Türe, A.; Olğaç, S.; Möller, S. Cloud-based high throughput virtual screening in novel drug discovery, in High-Performance Modelling and Simulation for Big Data Applications. Lecture Notes in Computer Science, 11400. Cham: Springer, 2019, 250–278.
|
[24] |
Seth, B.; Dalal, S.; Kumar, R. Securing bioinformatics cloud for big data: budding buzzword or a glance of the future, in Recent Advances in Computational Intelligence. Studies in Computational Intelligence, Vol 823. Cham: Springer, 2019, 121–147.
|
[25] |
Armoogum, S.; Li, X.M. Big data analytics and deep learning in bioinformatics with hadoop, in Deep Learning and Parallel Computing Environment for Bioengineering Systems. Amsterdam: Elsevier, 2019, 17–36.
|
[26] |
Frye, L.; Bhat, S.; Akinsanya, K.; Abel, R. From computer-aided drug discovery to computer-driven drug discovery. Drug Discov. Today Technol. 2021, 39, 111–117.
|
[27] |
Zhang, X.M.; Liang, L.; Liu, L.; Tang, M.J. Graph neural networks and their current applications in bioinformatics. Frontiers in genetics. 2021, 12, 690049.
|
[28] |
Gong, L.Y.; Cheng, Q. Exploiting edge features for graph neural networks. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 15–20, 2019. Long Beach, CA, USA. IEEE. 2019, 9203–9211.
|
[29] |
Nguyen, T.; Le, H.; Quinn, T.P.; Nguyen, T.; Le, T.D.; Venkatesh, S. GraphDTA: predicting drug–target binding affinity with graph neural networks. Bioinformatics. 2021, 37, 1140–1147.
|
[30] |
Sheng, N.; Cui, H.; Zhang, T.G.; Xuan, P. Attentional multi-level representation encoding based on convolutional and variance autoencoders for lncRNA–disease association prediction. Brief. Bioinform. 2021, 22, bbaa067.
|
[31] |
Eslami Manoochehri, H.; Nourani, M. Drug-target interaction prediction using semi-bipartite graph model and deep learning. BMC Bioinform. 2020, 21, 248.
|
[32] |
Zhao, T.Y.; Hu, Y.; Valsdottir, L.R.; Zang, T.Y.; Peng, J.J. Identifying drug–target interactions based on graph convolutional network and deep neural network. Brief. Bioinform. 2021, 22, 2141–2150.
|
[33] |
Peng, J.J.; Wang, Y.X.; Guan, J.J.; Li, J.Y.; Han, R.J.; Hao, J.Y.; Wei, Z.Y.; Shang, X.Q. An end-to-end heterogeneous graph representation learning-based framework for drug-target interaction prediction. Brief. Bioinform. 2021, 22, bbaa430.
|
[34] |
Wu, Z.H.; Pan, S.R.; Chen, F.W.; Long, G.D.; Zhang, C.Q.; Yu, P.S. A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 4–24.
|
[35] |
Tan, H.J.; Sun, Q.M.; Li, G.H.; Xiao, Q.; Ding, P.J.; Luo, J.W.; Liang, C. Multiview consensus graph learning for lncRNA–disease association prediction. Front. Genet. 2020, 11, 89.
|
[36] |
Mara, A.C.; Lijffijt, J.; Günnemann, S. ; De Bie, T. A systematic evaluation of node embedding robustness. in Learning on Graphs Conference, 198, 2022, 1–14.
|
[37] |
Thafar, M.A.; Olayan, R.S.; Ashoor, H.; Albaradei, S.; Bajic, V.B.; Gao, X.; Gojobori, T.; Essack, M. DTiGEMS+: drug-target interaction prediction using graph embedding, graph mining, and similarity-based techniques. J Cheminform. 2020, 12, 44.
|
[38] |
Tang, X.R.; Luo, J.W.; Shen, C.; Lai, Z.H. Multi-view multichannel attention graph convolutional network for miRNA–disease association prediction. Briefings in Bioinformatics, 2021, 22, bbab174.
|
[39] |
Zhang, W.; Yue, X.; Lin, W.; Wu, W.; Liu, R.; Huang, F.; Liu, F. Predicting drug-disease associations by using similarity constrained matrix factorization. BMC Bioinform. 2018, 19, 233.
|
[40] |
Ruiz, C.; Zitnik, M.; Leskovec, J. Identification of disease treatment mechanisms through the multiscale interactome. Nat. Commun. 2021, 12, 1796.
|
[41] |
Celebi, R.; Yasar, E.; Uyar, H.; Gumus, O.; Dikenelli, O.; Dumontier, M. Evaluation of knowledge graph embedding approaches for drug-drug interaction prediction using linked open data, in SWAT4HCLS 2018, 2018, 1–10.
|
[42] |
Karim, M.R.; Cochez, M.; Jares, J.B.; Uddin, M.; Beyan, O.; Decker, S. Drug-drug interaction prediction based on knowledge graph embeddings and convolutional-LSTM network. Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. Niagara Falls NY USA. ACM, 2019, 113–123.
|
[43] |
Park, C.; Park, J.; Park, S. AGCN: Attention-based graph convolutional networks for drug-drug interaction extraction. Expert Syst. Appl. 2020, 159, 113538.
|
[44] |
Sun, M.Y.; Zhao, S.D.; Gilvary, C.; Elemento, O.; Zhou, J.Y.; Wang, F. Graph convolutional networks for computational drug development and discovery. Briefings in bioinformatics, 2020, 21, 919–935.
|
[45] |
Pan, S.R.; Hu, R.Q.; Fung, S.F.; Long, G.D.; Jiang, J.; Zhang, C.Q. Learning graph embedding with adversarial training methods. IEEE Trans. Cybern. 2020, 50, 2475–2487.
|
[46] |
Wu, T.; Wang, Y.L.; Wang, Y.; Zhao, E.; Yuan, Y.L. Leveraging graph-based hierarchical medical entity embedding for healthcare applications. Sci. Rep. 2021, 11, 5858.
|
[47] |
Wright, L.; Davidson, S. How to tell the difference between a model and a digital twin. Adv. Model. Simul. Eng. Sci. 2020, 7, 13.
|
[48] |
Kamel Boulos, M.N.; Zhang, P. Digital twins: from personalised medicine to precision public health. J. Pers. Med. 2021, 11, 745.
|
[49] |
Garg, H. Digital twin technology: Revolutionaryto improve personalized healthcare. Sci. Prog. Res. 2021, 1, 32–34.
|
[50] |
Bruynseels, K.; Santoni de Sio, F.; van den Hoven, J. Digital twins in health care: ethical implications of an emerging engineering paradigm. Front. Genet. 2018, 9, 31.
|
[51] |
Portela, R.M.C.; Varsakelis, C.; Richelle, A.; Giannelos, N.; Pence, J.L.; Dessoy, S.; von Stosch, M. When is an in silico representation a digital twin? a biopharmaceutical industry approach to the digital twin concept. Digital Twins. Cham: Springer International Publishing, 2020, 35–55.
|
[52] |
Popa, E.O.; van Hilten, M.; Oosterkamp, E.; Bogaardt, M.J. The use of digital twins in healthcare: socio-ethical benefits and socio-ethical risks. Life Sci. Soc. Policy. 2021, 17, 6.
|
[53] |
Nargund, S.; Guenther, K.; Mauch, K. The move toward biopharma 4.0: Insilico biotechnology develops "smart" processes that benefit biomanufacturing through digital twins, in Genetic Engineering & Biotechnology News Vol. 39, 2019, 53–55.
|
[54] |
Huang, Z.; Shen, Y.; Li, J. Fey, M.; Brecher, C. A survey on AI-driven digital twins in industry 4.0: Smart manufacturing and advanced robotics. Sensors, 2021, 21, 6340.
|
[55] |
Barricelli, B.R.; Casiraghi, E.; Fogli, D. A survey on digital twin: definitions, characteristics, applications, and design implications. IEEE Access. 2019, 7, 167653–167671.
|
[56] |
Kaul, R.; Ossai, C.; Forkan, A.R.M.; Jayaraman, P.P.; Zelcer, J.; Vaughan, S.; Wickramasinghe, N. The role ofAIfor developing digital twins in healthcare: The case of cancer care. Wires Data Min. Knowl. Discov. 2023, 13, e1480.
|
[57] |
Sun, T.Z.; He, X.W.; Li, Z.H. Digital twin in healthcare: Recent updates and challenges. Digit. Health. 2023, 9, 20552076221149651.
|
[58] |
Li, H.Y.; Tian, S.Y.; Li, Y.; Fang, Q.M.; Tan, R.B.; Pan, Y.J.; Huang, C.; Xu, Y.; Gao, X. Modern deep learning in bioinformatics. J. Mol. Cell Biol. 2021, 12, 823–827.
|
[59] |
Mouchlis, V.D.; Afantitis, A.; Serra, A.; Fratello, M.; Papadiamantis, A.G.; Aidinis, V.; Lynch, I.; Greco, D.; Melagraki, G. Advances in de novo drug design: from conventional to machine learning methods. Int. J. Mol. Sci. 2021, 22, 1676.
|
[60] |
Wang, W.; Gao, X. Deep learning in bioinformatics. Methods. 2019, 166, 1–3.
|
[61] |
Vijayan, R.S.K.; Kihlberg, J.; Cross, J.B.; Poongavanam, V. Enhancing preclinical drug discovery with artificial intelligence. Drug Discov. Today. 2022, 27, 967–984.
|
[62] |
Li, Y.; Huang, C.; Ding, L.; Li, Z.; Pan, Y.; Gao, X. Deep learning in bioinformatics: Introduction, application, and perspective in the big data era. Methods, 2019, 166, 4–21.
|
[63] |
Quazi, S. Role of artificial intelligence and machine learning in bioinformatics: drug discovery and drug repurposing. Preprints, 2021. DOI:10.20944/PREPRINTS202105.0346.V1.
|
[64] |
Auslander, N.; Gussow, A.B.; Koonin, E.V. Incorporating machine learning into established bioinformatics frameworks. Int. J. Mol. Sci. 2021, 22, 2903.
|
[65] |
Tang, B.H.; Pan, Z.X.; Yin, K.; Khateeb, A. Recent advances of deep learning in bioinformatics and computational biology. Front. Genet. 2019, 10, 214.
|
[66] |
Kandathil, S.M.; Greener, J.G.; Jones, D.T. Recent developments in deep learning applied to protein structure prediction. Proteins: Structure, Function, and Bioinformatics. 2019, 87, 1179–1189.
|
[67] |
Cao, Y.; Geddes, T.A.; Yang, J.Y.H.; Yang, P.Y. Ensemble deep learning in bioinformatics. Nat. Mach. Intell. 2020, 2, 500–508.
|
[68] |
Chen, L.; Tan, X.; Wang, D.; Zhong, F.; Liu, X.; Yang, T.; Luo, X.; Chen, K.; Jiang, H.; Zheng, M. TransformerCPI: improving compound-protein interaction prediction by sequence-based deep learning with self-attention mechanism and label reversal experiments. Bioinformatics. 2020, 36, 4406–4414.
|
[69] |
Wang, J.X.; Liu, X.J.; Shen, S.Y.; Deng, L.; Liu, H. DeepDDS: deep graph neural network with attention mechanism to predict synergistic drug combinations. Brief. Bioinform. 2022, 23, bbab390.
|
[70] |
Liu, S.; Xu, X.R.; Yang, Z.H.; Zhao, X.H.; Liu, S.C.; Zhang, W. EPIHC: improving enhancer-promoter interaction prediction by using hybrid features and communicative learning. IEEE/ACM Trans. Comput. Biol. Bioinform. 2022, 19, 3435–3443.
|
[71] |
Fareed, M.M.; Impact of Deep learning-DL in the modern computational biology. European journal of volunteering and community-based projects. 2021, 1, 35–48.
|
[72] |
Ståhl, N.; Falkman, G.; Karlsson, A.; Mathiason, G.; Bostrom, J. Deep reinforcement learning for multiparameter optimization in de novo drug design. J. Chem. Inf. Model. 2019, 59, 3166–3176.
|
[73] |
Patel, L.; Shukla, T.; Huang, X.Z.; Ussery, D.W.; Wang, S.Z. Machine learning methods in drug discovery. Molecules. 2020, 25, 5277.
|
[74] |
Deng, Y.F.; Qiu, Y.; Xu, X.R.; Liu, S.C.; Zhang, Z.F.; Zhu, S.F.; Zhang, W. META-DDIE: predicting drug–drug interaction events with few-shot learning. Brief. Bioinform. 2022, 23, bbab514.
|
[75] |
Gull, S.; Minhas, F. AMP0: species-specific prediction of anti-microbial peptides using zero and few shot learning. IEEE/ACM Trans. Comput. Biol. Bioinform. 2022, 19, 275–283.
|
[76] |
Sen, S.; Das, R.; Dasgupta, S.; Maulik, U. Application of deep architecture in bioinformatics. Deep Learning Techniques for Biomedical and Health Informatics. Cham: Springer International Publishing. 2019, 167–186.
|
[77] |
Rundo, L.; Tangherloni, A.; Militello, C. Artificial intelligence applied to medical imaging and computational biology. Appl. Sci-Basel. 2022, 12, 9052.
|
[78] |
Yi, H.C.; You, Z.H.; Zhou, X.; Cheng, L.; Li, X.; Jiang, T.H.; Chen, Z.H. ACP-DL: a deep learning long short-term memory model to predict anticancer peptides using high-efficiency feature representation. Mol. Ther. Nucleic Acids. 2019, 17, 1–9.
|
[79] |
Bugnon, L.A.; Yones, C.; Milone, D.H.; Stegmayer, G. Deep neural architectures for highly imbalanced data in bioinformatics. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 2857–2867.
|
[80] |
Pfeifer, B.; Saranti, A.; Holzinger, A. GNN-SubNet: disease subnetwork detection with explainable graph neural networks. Bioinformatics. 2022, 38, ii120–ii126.
|