中国药学(英文版) ›› 2025, Vol. 34 ›› Issue (2): 99-108.DOI: 10.5246/jcps.2025.02.008
• 【综述】 • 下一篇
邓茜1,#, 彭紫凝1,#, 孟凡雨1,#, 晏蔚田2, 刘念1,*(), 彭江云2,*(
)
收稿日期:
2024-10-05
修回日期:
2024-11-15
接受日期:
2024-12-31
出版日期:
2025-03-01
发布日期:
2025-03-02
通讯作者:
刘念, 彭江云
Qian Deng1,#, Zining Peng1,#, Fanyu Meng1,#, Weitian Yan2, Nian Liu1,*(), Jiangyun Peng2,*(
)
Received:
2024-10-05
Revised:
2024-11-15
Accepted:
2024-12-31
Online:
2025-03-01
Published:
2025-03-02
Contact:
Nian Liu, Jiangyun Peng
About author:
# Qian Deng, Zining Peng and Fanyu Meng are co-frist authors.
Supported by:
摘要:
高尿酸血症(HUA)是由于人体尿酸生成增加和/或尿酸排泄受损导致血液中尿酸过多引起的代谢性疾病, 目前已成为一种流行病。现代西药治疗常伴随出现一系列不良反应。根据HUA发展的临床表现, 中医药在辨证的基础上, 将其病机之本归纳为脾失健运, 痰湿浊瘀是为其标。基于此, 具有健脾功效之品可以通过抑制尿酸合成酶的表达、促排尿酸排泄, 以及抗炎、抗氧化、调节肠道菌群、调节细胞生物过程等, 发挥治疗HUA的作用。同时临床应用也佐证这一观点, 故而对于HUA的治疗, 健脾是为标本同治之法。
Supporting:
邓茜, 彭紫凝, 孟凡雨, 晏蔚田, 刘念, 彭江云. 从健脾论高尿酸血症的诊治[J]. 中国药学(英文版), 2025, 34(2): 99-108.
Qian Deng, Zining Peng, Fanyu Meng, Weitian Yan, Nian Liu, Jiangyun Peng. Enhancing spleen function for effective hyperuricemia treatment[J]. Journal of Chinese Pharmaceutical Sciences, 2025, 34(2): 99-108.
[1] |
Wei, X.; Zhang, M.; Huang, S.A.; Lan, X.Z.; Zheng, J.; Luo, H.; He, Y.; Lei, W. Hyperuricemia: a key contributor to endothelial dysfunction in cardiovascular diseases. FASEB J. 2023, 37, e23012.
|
[2] |
Chinese Society of Endocrinology. Chinese Medical Association. Chinese guidelines for the diagnosis and treatment of hyperuricemia and gout (2019). Chin. J. Endo. Meta. 2020, 36, 1–13.
|
[3] |
Wei, Y.D.; Zhu, J.M.; Wetzstein, S.A. Plasma and water fluoride levels and hyperuricemia among adolescents: a cross-sectional study of a nationally representative sample of the United States for 2013–2016. Ecotoxicol. Environ. Saf. 2021, 208, 111670.
|
[4] |
Kumar, J.; Gupta, A.; Dev, K.; Kumar, S.; Kataria, D.; Gul, A.; Abbas, M.; Jamil, A.; Shahid, S.; Memon, S. Prevalence and causes of hyperuricemia in children. Cureus. 2021, 13, e15307.
|
[5] |
Li, Y.; Shen, Z.Y.; Zhu, B.W.; Zhang, H.; Zhang, X.Y.; Ding, X.Q. Demographic, regional and temporal trends of hyperuricemia epidemics in mainland China from 2000 to 2019: a systematic review and meta-analysis. Glob. Health Action. 2021, 14, 1874652.
|
[6] |
Stamp, L.K.; Day, R.O.; Yun, J. Allopurinol hypersensitivity: investigating the cause and minimizing the risk. Nat. Rev. Rheumatol. 2016, 12, 235–242.
|
[7] |
Pei, Y.; Wang, R.; Wang, D.D.; Guo L.; Wang B.; Kang H.Y. Literature analysis of HLA-B*5801 polymorphisms and cutaneous adverse reactions induced by allopurinol. Chin. J. Pharm. 2019, 3, 154–156, 163.
|
[8] |
Paul, B.J.; Anoopkumar, K.; Krishnan, V. Asymptomatic hyperuricemia: is it time to intervene? Clin. Rheumatol. 2017, 36, 2637–2644.
|
[9] |
Gong, F.; Wen, X.L.; Jie, Z.; Qing, H.K.; Xing, H.Z.; Li, H.L.; Chang, H.L. Safety and tolerability of available drugs for hyperuricemia: a critical. J. Chin. Pharm. Sci. 2022, 31, 397–411.
|
[10] |
Xiao, W.C.; Qi, L.; Yi, Z.; Tong, G.; Chu, X.Y.; Liang, R.Z.; Zhen M.L. Discovery of potential xanthine oxidase inhibitors based on virtual screening. J. Chin. Pharm. Sci. 2023, 32, 626–635.
|
[11] |
Arakawa, H.; Amezawa, N.; Katsuyama, T.; Nakanishi, T.; Tamai, I. Uric acid analogue as a possible xenobiotic marker of uric acid transporter Urat1 in rats. Drug Met. Pharm. 2019, 34, 155–158.
|
[12] |
Dalbeth, N.; Gosling, A.L.; Gaffo, A.; Abhishek, A. Gout. Lancet. 2021, 397, 1843–1855.
|
[13] |
Gong, F.; Wen, X.L. Advances in the treatment of hyperuricemia with traditional Chinese medicin. J. Chin. Pharm. Sci. 2024, 33, 381–395.
|
[14] |
Wang, Y.; Lin, Z.J.; Zhang, B.; Jiang, Z.X.; Guo, F.F.; Yang, T. Cichorium intybus L. extract suppresses experimental gout by inhibiting the NF-κB and NLRP3 signaling pathways. Int. J. Mol. Sci. 2019, 20, 4921.
|
[15] |
Liu, S.M.; Zhang, N.; Yu, D.H.; Wang, Y.; Zhou, Q.; Lu, F. Liver metabonomics of acute gouty arthritis treated by Diosocorea nipponica. Chin. J. Mater. Med. 2017, 42, 1971–1978.
|
[16] |
Sun, K.X. Screening and activity of food homologous materials for urate-lowering drugs. Shandong Agri. Univ. 2023.
|
[17] |
Li, J.; Jiang, L.L.; Li, M.X.; Deng F.; Xu, S.Y.; Xue, X.; Hu R.P.; Xue, H.T. Inhibitory effects of astragalus polysaccharide on activity of xanthine oxidase. Food Sci. Bio. 2021, 40, 16–20.
|
[18] |
Zhao, Z.T.; Nian, S.H.; Sun, X.Q.; Wang, W.; Zhang, Q.; Peng, D.Y.; Zhou, L.Y. Study on the effect of lowering uric acid and effect on the kidney of Poriae cutis in hyperuricemiamice. J. Hainan Med. Univ. 2023, 29, 168–174.
|
[19] |
Zhang, R.; Zhan, S.Y.; Li, S.Y.; Zhu, Z.Z.; He, J.R.; Lorenzo, J.M.; Barba, F.J. Anti-hyperuricemic and nephroprotective effects of extracts from Chaenomeles sinensis (Thouin) Koehne in hyperuricemic mice. Food Funct. 2018, 9, 5778–5790.
|
[20] |
Liu, T. Study on the effect of MuGua Huazhuo decoction on hyperuricemia mice and its mechanism. Guangdong Pharm. Univ. 2021.
|
[21] |
Naboka, O.; Vyshnevska, L.; Pasynchuk, I.; Filiptsova, O.; Tkachenko, O.; Vislous, O. Pharmacological study of original extracts of corn silk. ScienceRise Biol. Sci. 2022, 4, 10–17.
|
[22] |
Huang, Y.H.; Xu, S.; Fang, W.; Song, W.; He, Y.J.; Zhang, Y.X.; Ma, Z.Y. Anti-hyperuricemia and renal protection effects of total flavonoids from corn silk. J. Zhengzhou Univ. (Med. Sci.). 2024, 59, 45–50.
|
[23] |
Li, D.L.; Yuan, S.Y.; Deng, Y.Y.; Wang, X.W.; Wu, S.H.; Chen, X.S.; Li, Y.M.; Ouyang, J.T.; Lin, D.Y.; Quan, H.H.; Fu, X.W.; Li, C.; Mao, W. The dysregulation of immune cells induced by uric acid: mechanisms of inflammation associated with hyperuricemia and its complications. Front. Immunol. 2023, 14, 1282890.
|
[24] |
Yang, L.T.; Wang, B.; Ma, L.; Fu, P. Traditional Chinese herbs and natural products in hyperuricemia-induced chronic kidney disease. Front. Pharmacol. 2022, 13, 971032.
|
[25] |
Bian, M.; Wang, J.; Wang, Y.; Nie, A.Z.; Zhu, C.S.; Sun, Z.X.; Zhou, Z.; Zhang, B. Chicory ameliorates hyperuricemia via modulating gut microbiota and alleviating LPS/TLR4 axis in quail. Bio. Pharm. 2020, 131, 110719.
|
[26] |
Yang, Y.; Zhang, D.M.; Liu, J.H.; Hu, L.S.; Xue, Q.C.; Ding, X.Q.; Kong, L.D. Wuling San protects kidney dysfunction by inhibiting renal TLR4/MyD88 signaling and NLRP3 inflammasome activation in high fructose-induced hyperuricemic mice. J. Ethnopharmacol. 2015, 169, 49–59.
|
[27] |
Chen, X.; Ge, H.Z.; Lei, S.S.; Jiang, Z.T.; Su, J.; He, X.; Zheng, X.; Wang, H.Y.; Yu, Q.X.; Li, B.; Lv, G.Y.; Chen, S.H. Dendrobium officinalis six nostrum ameliorates urate under-excretion and protects renal dysfunction in lipid emulsion-induced hyperuricemic rats. Bio. Pharm. 2020, 132, 110765.
|
[28] |
Ge, H.Z.; Jiang, Z.T.; Li, B.; Xu, P.Y.; Wu, H.S.; He, X.; Xu, W.F.; Huang, Z.; Xiong, T.X.; Wang, P.; Lv, G.Y.; Chen, S.H. Dendrobium officinalis six nostrum promotes intestinal urate underexcretion via regulations of urate transporter proteins in hyperuricemic rats. Comb. Chem. High Throughput Screen. 2023, 26, 848–861.
|
[29] |
Wei, W.J.; Gao, X.; Lei, Y.; Yang, X.B.; Hui, Y.Y. Protective effect of oxymatrine on myocardial injury in septic shock rats through TGF-β1/Smads signaling pathway. Pro. Modern Bio. 2023, 23, 1436–1441.
|
[30] |
Yin, N.; Li, X.S.; Liu, W.C.; Qi, Y.; Wu, R.F.; Li, Z.F.; Ying, S.; Yang, H.H.; Gu, Q.L.; Wu, Z.; Zou, N.T.; Duan, W.G.; Peng, J.Y.; Wan, C.P. Jian Pi Shen Shi formula alleviates hyperuricemia and related renal fibrosis in uricase-deficient rats via suppression of the collagen-binding pathway. Int. J. Rheum. Dis. 2022, 25, 1395–1407.
|
[31] |
Lu, M.X.; Yin, J.Y.; Xu, T.S.; Dai, X.; Liu, T.Y.; Zhang, Y.Y.; Wang, S.; Liu, Y.G.; Shi, H.F.; Zhang, Y.F.; Mo, F.F.; Sukhorukov, V.; Orekhov, A.N.; Gao, S.H.; Wang, L.L.; Zhang, D.W. Fuling-Zexie formula attenuates hyperuricemia-induced nephropathy and inhibits JAK2/STAT3 signaling and NLRP3 inflammasome activation in mice. J. Ethnopharmacol. 2024, 319, 117262.
|
[32] |
Liu, N.; Xu, H.; Sun, Q.Q.; Yu, X.J.; Chen, W.T.; Wei, H.Q.; Jiang, J.; Xu, Y.Z.; Lu, W.J. The role of oxidative stress in hyperuricemia and xanthine oxidoreductase (XOR) inhibitors. Oxid. Med. Cell Longev. 2021, 2021, 1470380.
|
[33] |
Chen, T.R.; Pubu, D.J.; Zhang, W.H.; Meng, S.Y.; Yu, C.C.; Yin, X.Q.; Liu, J.L.; Zhang, Y.H. Optimization of the extraction process and metabonomics analysis of uric acid-reducing active substances from Gymnadenia R.Br. and its protective effect on hyperuricemia zebrafish. Front. Nutr. 2022, 9, 1054294.
|
[34] |
Wang, Y.X.; Wu, Y.S.; Zhang, C.Y.; Gao, J.D. Effects of compound recipe of reducing uric acid on oxidative stress and renal inflammatory state inrats with hyperuricemia. Acade. J. Shanghai Univ. TCM. 2018, 32, 80–85
|
[35] |
Jiang, X.C.; Tian, D.Z.; Liu, Q.; Jiang, X.Y.; Yu, H.; Yu, W.Y.; Xiao, M.; Cao, J.G. Shenling Baizhusan improves spermatogenesis in hyperuricemia oligoasthenospermia mice by regulating Nrf2/ARE pathway. Chin. J. Exper. Trad. Med. Form. 2023, 29, 22–30.
|
[36] |
Khoury, T.; Tzukert, K.; Abel, R.; Abu Rmeileh, A.; Levi, R.; Ilan, Y. The gut-kidney axis in chronic renal failure: a new potential target for therapy. Hemodial. Int. 2017, 21, 323–334.
|
[37] |
Meng, D.L.; Liang, L.X.; Song, H.Y. Physiological function of short-chain fatty acids in the intestine. Chin. J. New Clin. Med. 2018, 11, 198–202.
|
[38] |
García-Arroyo, F.E.; Gonzaga, G.; Muñoz-Jiménez, I.; Blas-Marron, M.G.; Silverio, O.; Tapia, E.; Soto, V.; Ranganathan, N.; Ranganathan, P.; Vyas, U.; Irvin, A.; Ir, D.; Robertson, C.E.; Frank, D.N.; Johnson, R.J.; Sánchez-Lozada, L.G. Probiotic supplements prevented oxonic acid-induced hyperuricemia and renal damage. PLoS One. 2018, 13, e0202901.
|
[39] |
Wang, F.; Xin, K.; Chen, L.; Li, S.S.; Li, J.F. Regulatory effect of Dizhuo decoction on intestinal dysbiosis in hyperuricemic rats based on TLR4/NF-κB signaling pathway. Chin. J. Microecol. 2024, 36, 10–17, 28.
|
[40] |
Jia, E.T.; Jiang, Y.K.; He, S.H.; Zhang, J.Y. Effect of Ci Ling Huazhuo Granules on Gut Microbiome in Gout Patients. J. Guangzhou Univ. TCM. 2022, 39, 522–526.
|
[41] |
Zhong, C.S.; Zeng, B.; Qiu, J.H.; Xu, L.H.; Zhong, M.Y.; Huang, Y.T.; Xu, R.; Liu, S.Y.; Zha, Q.B.; Hu, B.; Ou-Yang, D.Y.; He, X.H. Gout-associated monosodium urate crystal-induced necrosis is independent of NLRP3 activity but can be suppressed by combined inhibitors for multiple signaling pathways. Acta Pharmacol. Sin. 2022, 43, 1324–1336.
|
[42] |
Yu, W.; Liu, W.D.; Xie, D.; Wang, Q.; Xu, C.X.; Zhao, H.R.; Lv, J.M.; He, F.R.; Chen, B.Y.; Yamamoto, T.; Koyama, H.; Cheng, J.D. High level of uric acid promotes atherosclerosis by targeting NRF2-mediated autophagy dysfunction and ferroptosis. Oxid. Med. Cell Longev. 2022, 2022, 9304383.
|
[43] |
Badawy, A.M.; Taha, M.; Elazab, S.T.; El-Shenbaby, I.; Alghamdi, B.A.; Hendawy, M.; Al-Kushi, A.G.; Fathy, K.; Baokbah, T.A.S.; Ibrahim, M.M. Targeting of Nrf2/PPARγ/NLRP3 signaling pathway by stevia rebudiana bertoni extract provides a novel insight into its protective effect against acute gouty arthritis-induced synovial inflammation, oxidative stress and apoptosis in a rat model. Processes. 2022, 10, 1751.
|
[44] |
Li, C.; Wang, C.; Guo, Y.J.; Wen, R.; Yan, L.P.; Zhang, F.R.; Gong, Q.F.; Yu, H. Research on the effect and underlying molecular mechanism of Cangzhu in the treatment of gouty arthritis. Eur. J. Pharmacol. 2022, 927, 175044.
|
[45] |
Jia, P.; Chen, G.; Yang, J.; Qin, W.Y. Study on the effect of Simiao Pills on inflammation development and regulation of macrophage polarization in rats with gouty arthritis. Chin. J. TCM Pharm. 2022, 37, 3498–3502.
|
[46] |
Shang, J.J.; Sun, C.; Wang, X.J.; Liu, H.Y. A retrospective study of spleen-activating and turbid pathogen-eliminating therapy in treatment of hyperuricemia with spleen deficiency. J. Anhui Univ. Chin. Med. 2021, 40, 38–42.
|
[47] |
Zhang, S.Z.; Wang, Z.; Shi, X.L. Effect of invigorating spleen and turbidimetry on blood pressure. Hebei Med. 2012, 34, 771–772.
|
[48] |
Xing, J.Y.; Meng, Y.; Li, Y.M.; Cui, J.L.; Wang, Y.J.; Gao, Y.B. Clinical observation of Jianpi Lishi Tongluo Decoction in treating type 2 diabetes mellitus with hyperuricemie. Beijing J. TCM. 2022, 41, 1110–1114.
|
[49] |
Xie, X.C.; Gong, M.; Chen, W.W.; Yang, A.H.; Liu, M. Clinical observation of Lingbi Simiao Decoction combined with western medicine in the treatment of type 2 diabetes with hyperuricemia in spleen-kidney deficiency and turbid toxin internal resistance syndrome. Chin. J. TCM Pharm. 2021, 36, 5686–5688.
|
[50] |
Chen, Y.; Fan, R.D.; Li, D. The clinical research on the therapeutic effect of metabolic syndrome with hyperuricemia by Yiqi huaju xiaoli fomula. CSTPCD. 2023, 24, 978–981, 985.
|
[1] | 于小桐, 吴静, 张琦, 洪佳美, 于晶, 关注, 尹艳慧, 杨振军. 中性胞苷/阳离子脂质递送猪脾提取物(PAT)发挥强效抗肿瘤作用[J]. 中国药学(英文版), 2025, 34(1): 14-27. |
[2] | 郑佳, 付颖. 骨质疏松症中联合和序贯治疗的进展[J]. 中国药学(英文版), 2024, 33(7): 587-596. |
[3] | 方功, 李文汐. 中药治疗高尿酸血症的研究进展[J]. 中国药学(英文版), 2024, 33(5): 381-395. |
[4] | 彭紫凝, 邓茜, 孟凡雨, 王兴强, 刘念, 晏蔚田, 彭江云. 通过文献计量学方法分析痛风和高尿酸血症动物模型的研究现状[J]. 中国药学(英文版), 2024, 33(11): 1058-1067. |
[5] | 王立, 芮萌, 彭军, 凌云. 新型冠状病毒感染口服治疗药物的研究进展[J]. 中国药学(英文版), 2024, 33(11): 1082-1089. |
[6] | 吕雯, 付颖. Graves眼病的免疫靶向治疗的研究进展[J]. 中国药学(英文版), 2023, 32(8): 616-625. |
[7] | 万敏, 刘金玉, 喻光燚, 童绥菊, 柯磊, 张玉, 游如旭. 基于WHO/HAI标准调查方法的武汉市骨质疏松治疗药物的可获得性及可负担性分析[J]. 中国药学(英文版), 2023, 32(5): 417-425. |
[8] | 苏俐玫, 毛溪悦, 阳丽梅. 肺癌患者静脉血栓栓塞预防的疗效与安全性的meta分析[J]. 中国药学(英文版), 2023, 32(10): 852-860. |
[9] | 杨东升, 魏宁漪, 牛剑钊, 许鸣镝. 治疗等效性评价代码介绍及其对我国仿制药参比制剂选择的影响[J]. 中国药学(英文版), 2022, 31(8): 646-651. |
[10] | 方功, 李文汐, 张杰, 柯清华, 朱兴贵, 龙立华, 李昌海. 高尿酸血症可用药物的安全性和耐受性: 一项重要综述和最新研究进展[J]. 中国药学(英文版), 2022, 31(6): 397-411. |
[11] | 武海艳, 张翔, 丁珊珊, 张国华, 唐琳琳, 唐琳. 儿童难治性支原体肺炎的抗支原体药物治疗进展[J]. 中国药学(英文版), 2022, 31(5): 334-342. |
[12] | 杨杰, 孟海阳, 李朵璐, 王艳英, 古兆森, 张晓坚. 国内中西医结合病房的药物治疗相关问题研究[J]. 中国药学(英文版), 2022, 31(4): 279-288. |
[13] | 冯书云, 陈朋举, 王宁, 赵博, 卢奕帆, 张永恒. 老年慢性病患者合作药物治疗管理模式的探索[J]. 中国药学(英文版), 2022, 31(11): 866-876. |
[14] | 李苗, 孔晓岩, 王淑梅. 血液系统恶性肿瘤患儿甲氨蝶呤清除延迟危险因素的回顾性分析[J]. 中国药学(英文版), 2022, 31(10): 746-754. |
[15] | 刘雅婕, 王雨, 李佳佳, 许晓庆, 李馨儒. 载阿霉素-芦米司匹多囊脂质体的制备及体内外评价[J]. 中国药学(英文版), 2021, 30(9): 736-742. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||