中国药学(英文版) ›› 2024, Vol. 33 ›› Issue (4): 285-304.DOI: 10.5246/jcps.2024.04.022
• 【综 述】 • 下一篇
收稿日期:
2023-10-07
修回日期:
2023-11-19
接受日期:
2024-01-13
出版日期:
2024-04-30
发布日期:
2024-04-30
通讯作者:
向德兵
Junchen Ge1, Debing Xiang2,3,*()
Received:
2023-10-07
Revised:
2023-11-19
Accepted:
2024-01-13
Online:
2024-04-30
Published:
2024-04-30
Contact:
Debing Xiang
Supported by:
摘要:
肿瘤已成为仅次于心脑血管疾病死亡率第二高的疾病, 中药也因其治疗效果强、副作用少、靶点多已成为抗肿瘤主要的替代药物之一, 可在肿瘤治疗的不同阶段均发挥着重要作用。但由于中药溶解度差、渗透性差、消除快、稳定性差、生物利用度低、半衰期短等问题阻碍了其临床应用。为了克服中药抗肿瘤的局限性, 近年来, 纳米技术被用于中医的临床治疗。纳米靶向给药系统通过与中药有效成分在抗肿瘤中的结合, 使得中药纳米靶向给药系统在肿瘤治疗中发挥着越来越重要的作用, 部分中药纳米药物载体已进入临床试验或用于疾病诊断和治疗, 促进了中医药的发展。因此, 本文就纳米靶向递送系统在中药抗肿瘤治疗中的应用进展进行综述。
Supporting:
葛俊辰, 向德兵. 纳米靶向递送系统在中药抗肿瘤中的应用进展[J]. 中国药学(英文版), 2024, 33(4): 285-304.
Junchen Ge, Debing Xiang. Advances of nano-targeted drug delivery systems in traditional Chinese medicine anticancer therapy[J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(4): 285-304.
[1] |
Swanson, K.; Wu, E.; Zhang, A.; Alizadeh, A.A.; Zou, J. From patterns to patients: advances in clinical machine learning for cancer diagnosis, prognosis, and treatment. Cell. 2023, 186, 1772–1791.
|
[2] |
García-Anaya, M.J.; Segado-Guillot, S.; Cabrera-Rodríguez, J.; Toledo-Serrano, M.D.; Medina-Carmona, J.A.; Gómez-Millán, J. Dose and volume de-escalation of radiotherapy in head and neck cancer. Crit. Rev. Oncol. Hematol. 2023, 186, 103994.
|
[3] |
Huot, J.R.; Baumfalk, D.; Resendiz, A.; Bonetto, A.; Smuder, A.J.; Penna, F. Targeting mitochondria and oxidative stress in cancer- and chemotherapy-induced muscle wasting. Antioxid. Redox Signal. 2023, 38, 352–370.
|
[4] |
Huang, J.; Zhu, Y.; Xiao, H.; Liu, J.W.; Li, S.T.; Zheng, Q.; Tang, J.Y.; Meng, X.R. Formation of a traditional Chinese medicine self-assembly nanostrategy and its application in cancer: a promising treatment. Chin. Med. 2023, 18, 66.
|
[5] |
Ke, G.F.; Zhang, J.; Gao, W.F.; Chen, J.Y.; Liu, L.T.; Wang, S.M.; Zhang, H.; Yan, G.J. Application of advanced technology in traditional Chinese medicine for cancer therapy. Front. Pharmacol. 2022, 13, 1038063.
|
[6] |
Liu, Y.M.; Yang, S.S.; Wang, K.L.; Lu, J.; Bao, X.M.; Wang, R.; Qiu, Y.L.; Wang, T.; Yu, H.Y. Cellular senescence and cancer: focusing on traditional Chinese medicine and natural products. Cell Prolif. 2020, 53, e12894.
|
[7] |
Guo, L.; Zhang, Y.P.; Al-Jamal, K.T. Recent progress in nanotechnology-based drug carriers for celastrol delivery. Biomater. Sci. 2021, 9, 6355–6380.
|
[8] |
Pei, Z.R.; Chen, S.T.; Ding, L.Q.; Liu, J.B.; Cui, X.Y.; Li, F.Y.; Qiu, F. Current perspectives and trend of nanomedicine in cancer: a review and bibliometric analysis. J. Control. Release. 2022, 352, 211–241.
|
[9] |
Li, K.S.; Wang, R.D.; Peng, W.; Dong, D.W.; Qi, X.R. Riboflavin-modified lipo-polyplexes co-delivering CXCR4 siRNA and doxorubicin for treatment of highly metastatic cancer. J. Chin. Pharm. Sci. 2021, 30, 189–205.
|
[10] |
Zhai, B.T.; Sun, J.; Shi, Y.J.; Zhang, X.F.; Zou, J.B.; Cheng, J.H.; Fan, Y.Z.; Guo, D.Y.; Tian, H. Review targeted drug delivery systems for norcantharidin in cancer therapy. J. Nanobiotechnol. 2022, 20, 509.
|
[11] |
Gaumet, M.; Vargas, A.; Gurny, R.; Delie, F. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur. J. Pharm. Biopharm. 2008, 69, 1–9.
|
[12] |
Li, J.L.; Cheng, X.D.; Chen, Y.; He, W.M.; Ni, L.; Xiong, P.H.; Wei, M.G. Vitamin E TPGS modified liposomes enhance cellular uptake and targeted delivery of luteolin: an in vivo/in vitro evaluation. Int. J. Pharm. 2016, 512, 262–272.
|
[13] |
Wei, Y.M.; Liang, J.; Zheng, X.L.; Pi, C.; Liu, H.; Yang, H.R.; Zou, Y.G.; Ye, Y.; Zhao, L. Lung-targeting drug delivery system of baicalin-loaded nanoliposomes: development, biodistribution in rabbits, and pharmacodynamics in nude mice bearing orthotopic human lung cancer. Int. J. Nanomed. 2016, 12, 251–261.
|
[14] |
Fu, M.; Tang, W.; Liu, J.J.; Gong, X.Q.; Kong, L.A.; Yao, X.M.; Jing, M.; Cai, F.Y.; Li, X.T.; Ju, R.J. Combination of targeted daunorubicin liposomes and targeted emodin liposomes for treatment of invasive breast cancer. J. Drug Target. 2020, 28, 245–258.
|
[15] |
Meng, J.; Guo, F.Q.; Xu, H.Y.; Liang, W.; Wang, C.; Yang, X.D. Combination Therapy using Co-encapsulated Resveratrol and Paclitaxel in Liposomes for Drug Resistance Reversal in Breast Cancer Cells in vivo. Sci. Rep. 2016, 6, 22390.
|
[16] |
Bao, H.; Zheng, N.B.; Li, Z.T.; Zhi, Y.A. Synergistic effect of tangeretin and atorvastatin for colon cancer combination therapy: targeted delivery of these dual drugs using RGD peptide decorated nanocarriers. Drug Des. Dev. Ther. 2020, 14, 3057–3068.
|
[17] |
Dave, V.; Tak, K.; Sohgaura, A.; Gupta, A.; Sadhu, V.; Reddy, K.R. Lipid-polymer hybrid nanoparticles: synthesis strategies and biomedical applications. J. Microbiol. Methods. 2019, 160, 130–142.
|
[18] |
Zhu, B.M.; Yu, L.L.; Yue, Q.C. Co-delivery of vincristine and quercetin by nanocarriers for lymphoma combination chemotherapy. Biomed. Pharmacother. 2017, 91, 287–294.
|
[19] |
Li, C.M.; Ge, X.C.; Wang, L.G. Construction and comparison of different nanocarriers for co-delivery of cisplatin and curcumin: a synergistic combination nanotherapy for cervical cancer. Biomed. Pharmacother. 2017, 86, 628–636.
|
[20] |
Ruttala, H.B.; Ko, Y.T. Liposomal co-delivery of curcumin and albumin/paclitaxel nanoparticle for enhanced synergistic antitumor efficacy. Colloids Surf. B. 2015, 128, 419–426.
|
[21] |
Kebebe, D.; Wu, Y.M.; Zhang, B.; Yang, J.A.; Liu, Y.Y.; Li, X.Y.; Ma, Z.; Lu, P.; Liu, Z.D.; Li, J.W. Dimeric c(RGD) peptide conjugated nanostructured lipid carriers for efficient delivery of Gambogic acid to breast cancer. Int. J. Nanomed. 2019, 14, 6179–6195.
|
[22] |
Zhang, B.; Zhang, Y.; Dang, W.L.; Xing, B.; Yu, C.H.; Guo, P.; Pi, J.X.; Deng, X.P.; Qi, D.L.; Liu, Z.D. The anti-tumor and renoprotection study of E-[c(RGDfK)2]/folic acid co-modified nanostructured lipid carrier loaded with doxorubicin hydrochloride/salvianolic acid A. J. Nanobiotechnol. 2022, 20, 425.
|
[23] |
Liu, Q.A.; Li, J.A.; Pu, G.B.; Zhang, F.; Liu, H.Y.; Zhang, Y.Q. Co-delivery of baicalein and doxorubicin by hyaluronic acid decorated nanostructured lipid carriers for breast cancer therapy. Drug Deliv. 2016, 23, 1364–1368.
|
[24] |
Jiang, H.; Geng, D.M.; Liu, H.Q.; Li, Z.R.; Cao, J. Co-delivery of etoposide and curcumin by lipid nanoparticulate drug delivery system for the treatment of gastric tumors. Drug Deliv. 2016, 23, 3665–3673.
|
[25] |
Liu, Y.K.; Zhou, L.; Tan, J.; Xu, W.Q.; Huang, G.L.; Ding, J.E. Ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic acid loaded onto fluorescent mesoporous silica nanoparticles for the location and therapy of nasopharyngeal carcinoma. Anal. 2021, 146, 1596–1603.
|
[26] |
Li, Z.; Zhang, Y.T.; Zhang, K.; Wu, Z.M.; Feng, N.P. Biotinylated-lipid bilayer coated mesoporous silica nanoparticles for improving the bioavailability and anti-leukaemia activity of Tanshinone IIA. Artif. Cells Nanomed. Biotechnol. 2018, 46, 578–587.
|
[27] |
Yao, H.L.; Zhao, J.L.; Wang, Z.; Lv, J.W.; Du, G.J.; Jin, Y.G.; Zhang, Y.; Song, S.Y.; Han, G. Enhanced anticancer efficacy of cantharidin by mPEG-PLGA micellar encapsulation: an effective strategy for application of a poisonous traditional Chinese medicine. Colloids Surf. B. 2020, 196, 111285.
|
[28] |
Chen, F.Q.; Zhang, J.M.; He, Y.; Fang, X.F.; Wang, Y.T.; Chen, M.W. Glycyrrhetinic acid-decorated and reduction-sensitive micelles to enhance the bioavailability and anti-hepatocellular carcinoma efficacy of tanshinone IIA. Biomater. Sci. 2016, 4, 167–182.
|
[29] |
Zhang, Q.; Tian, X.; Cao, X.F. Transferrin-functionalised microemulsion co-delivery of β-elemene and celastrol for enhanced anti-lung cancer treatment and reduced systemic toxicity. Drug Deliv. Transl. Res. 2019, 9, 667–678.
|
[30] |
Qu, D.; Sun, W.J.; Liu, M.J.; Liu, Y.P.; Zhou, J.; Chen, Y. Bitargeted microemulsions based on coix seed ingredients for enhanced hepatic tumor delivery and synergistic therapy. Int. J. Pharm. 2016, 503, 90–101.
|
[31] |
Wang, H.; Zhu, Z.H.; Zhang, G.L.; Lin, F.X.; Liu, Y.; Zhang, Y.; Feng, J.; Chen, W.H.; Meng, Q.; Chen, L.K. AS1411 aptamer/hyaluronic acid-bifunctionalized microemulsion co-loading shikonin and docetaxel for enhanced antiglioma therapy. J. Pharm. Sci. 2019, 108, 3684–3694.
|
[32] |
Shi, P.Z.; Cheng, Z.R.; Zhao, K.C.; Chen, Y.H.; Zhang, A.R.; Gan, W.K.; Zhang, Y.K. Active targeting schemes for nano-drug delivery systems in osteosarcoma therapeutics. J. Nanobiotechnol. 2023, 21, 103.
|
[33] |
Guo, M.F.; Qu, D.; Qin, Y.E.; Chen, Y.Y.; Liu, Y.P.; Huang, M.M.; Chen, Y. Transferrin-functionalized microemulsions coloaded with coix seed oil and tripterine deeply penetrate to improve cervical cancer therapy. Mol. Pharmaceutics. 2019, 16, 4826–4835.
|
[34] |
Cui, T.X.; Zhang, S.H.; Sun, H. Co-delivery of doxorubicin and pH-sensitive curcumin prodrug by transferrin-targeted nanoparticles for breast cancer treatment. Oncol. Rep. 2017, 37, 1253–1260.
|
[35] |
Zeng, H.R.; Xia, C.; Zhao, B.; Zhu, M.M.; Zhang, H.Y.; Zhang, D.E.; Rui, X.; Li, H.L.; Yuan, Y. Folic acid–functionalized metal-organic framework nanoparticles as drug carriers improved bufalin antitumor activity against breast cancer. Front. Pharmacol. 2022, 12, 747992.
|
[36] |
Li, D.N.; Liu, S.G.; Zhu, J.H.; Shen, L.Q.; Zhang, Q.; Zhu, H. Folic acid modified TPGS as a novel nano-micelle for delivery of nitidine chloride to improve apoptosis induction in Huh7 human hepatocellular carcinoma. BMC. Pharmacol. Toxicol. 2021, 22, 1.
|
[37] |
Li, C.Q.; Zhang, K.; Liu, A.D.; Yue, T.X.; Wei, Y.H.; Zheng, H.S.; Piao, J.G.; Li, F.Z. MMP2-responsive dual-targeting drug delivery system for valence-controlled arsenic trioxide prodrug delivery against hepatic carcinoma. Int. J. Pharm. 2021, 609, 121209.
|
[38] |
Lan, J.S.; Qin, Y.H.; Liu, L.; Zeng, R.F.; Yang, Y.; Wang, K.; Ding, Y.E.; Zhang, T.; Ho, R.J. A carrier-free folate receptor-targeted ursolic acid/methotrexate nanodelivery system for synergetic anticancer therapy. Int. J. Nanomed. 2021, 16, 1775–1787.
|
[39] |
Li, N.N.; Wang, Z.; Zhang, Y.T.; Zhang, K.; Xie, J.X.; Liu, Y.; Li, W.S.; Feng, N.P. Curcumin-loaded redox-responsive mesoporous silica nanoparticles for targeted breast cancer therapy. Artif. Cells Nanomed. Biotechnol. 2018, 46, 921–935.
|
[40] |
Li, Z.; Zhang, Y.T.; Zhu, C.Y.; Guo, T.; Xia, Q.; Hou, X.F.; Liu, W.; Feng, N.P. Folic acid modified lipid-bilayer coated mesoporous silica nanoparticles co-loading paclitaxel and tanshinone IIA for the treatment of acute promyelocytic leukemia. Int. J. Pharm. 2020, 586, 119576.
|
[41] |
Huang, R.; Li, J.W.; Kebebe, D.; Wu, Y.M.; Zhang, B.; Liu, Z.D. Cell penetrating peptides functionalized gambogic acid-nanostructured lipid carrier for cancer treatment. Drug Deliv. 2018, 25, 757–765.
|
[42] |
Li, J.; Jin, S.; Dong, X.R.; Han, X.F.; Wang, M.Y. Construction of artesunate nanoparticles modified by hyaluronic acid and cell-penetrating peptides and its inhibitory effect on cancer cells in vitro. China J. Chin. Mater. Med. 2018, 43, 3668–3675.
|
[43] |
Chen, B.W.; Liu, X.H.; Li, Y.N.; Shan, T.H.; Bai, L.Y.; Li, C.Y.; Wang, Y.S. iRGD tumor-penetrating peptide-modified nano-delivery system based on a marine sulfated polysaccharide for enhanced anti-tumor efficiency against breast cancer. Int. J. Nanomed. 2022, 17, 617–633.
|
[44] |
Wang, Y.Y.; Fu, M.; Liu, J.J.; Yang, Y.N.; Yu, Y.B.; Li, J.Y.; Pan, W.; Fan, L.; Li, G.R.; Li, X.T.; Wang, X.B. Inhibition of tumor metastasis by targeted daunorubicin and dioscin codelivery liposomes modified with PFV for the treatment of non-small-cell lung cancer. Int. J. Nanomed. 2019, 14, 4071–4090.
|
[45] |
Sun, M.M.; Fan, X.J.; Meng, X.H.; Song, J.M.; Chen, W.N.; Sun, L.N.; Xie, H. Magnetic biohybrid micromotors with high maneuverability for efficient drug loading and targeted drug delivery. Nanoscale. 2019, 11, 18382–18392.
|
[46] |
Zhang, J.M.; Li, J.J.; Shi, Z.; Yang, Y.; Xie, X.; Lee, S.M.; Wang, Y.T.; Leong, K.W.; Chen, M.W. pH-sensitive polymeric nanoparticles for co-delivery of doxorubicin and curcumin to treat cancer via enhanced pro-apoptotic and anti-angiogenic activities. Acta Biomater. 2017, 58, 349–364.
|
[47] |
Yu, Y.; Zhang, X.L.; Qiu, L.Y. The anti-tumor efficacy of curcumin when delivered by size/charge-changing multistage polymeric micelles based on amphiphilic poly(β-amino ester) derivates. Biomaterials. 2014, 35, 3467–3479.
|
[48] |
Duan, C.X.; Gao, J.A.; Zhang, D.R.; Jia, L.J.; Liu, Y.E.; Zheng, D.D.; Liu, G.P.; Tian, X.N.; Wang, F.S.; Zhang, Q.A. Galactose-decorated pH-responsive nanogels for hepatoma-targeted delivery of oridonin. Biomacromolecules. 2011, 12, 4335–4343.
|
[49] |
Sun, G.X.; Sun, K.; Sun, J.E. Combination prostate cancer therapy: Prostate-specific membranes antigen targeted, pH-sensitive nanoparticles loaded with doxorubicin and tanshinone. Drug Deliv. 2021, 28, 1132–1140
|
[50] |
Chen, Y.K.; Su, M.L.; Jia, L.J.; Zhang, Z.X. Synergistic chemo-photothermal and ferroptosis therapy of polydopamine nanoparticles for esophageal cancer. Nanomedicine. 2022, 17, 1115–1130.
|
[51] |
Danafar, H.; Shara\ufb01, A.; Kheiri, S.; Manjili, H.K. Co-delivery of sulforaphane and curcumin with PEGylated iron oxide-gold core shell nanoparticles for delivery to breast cancer cell line. Iran. J. Pharm. Res. 2018, 17, 480–494.
|
[52] |
Wang, H.; Chen, W.H.; Wu, G.J.; Kong, J.; Yuan, S.F.; Chen, L.K. A magnetic T7 Peptide&AS1411 aptamer-modified microemulsion for triple glioma-targeted delivery of shikonin and docetaxel. J. Pharm. Sci. 2021, 110, 2946–2954.
|
[53] |
Wu, X.L.; Yang, H.; Chen, X.M.; Gao, J.X.; Duan, Y.; Wei, D.H.; Zhang, J.C.; Ge, K.; Liang, X.J.; Huang, Y.Y.; Feng, S.Z.; Zhang, R.L.; Chen, X.; Chang, J. Nano-herb medicine and PDT induced synergistic immunotherapy for colon cancer treatment. Biomaterials. 2021, 269, 120654.
|
[54] |
Wen, Y.; Zhang, W.; Gong, N.Q.; Wang, Y.F.; Guo, H.B.; Guo, W.S.; Wang, P.C.; Liang, X.J. Carrier-free, self-assembled pure drug nanorods composed of 10-hydroxycamptothecin and chlorin e6 for combinatorial chemo-photodynamic antitumor therapy in vivo. Nanoscale. 2017, 9, 14347–14356.
|
[55] |
Guo, C.J.; Hou, X.Y.; Liu, Y.H.; Zhang, Y.C.; Xu, H.Y.; Zhao, F.; Chen, D.Q. Novel Chinese angelica polysaccharide biomimetic nanomedicine to curcumin delivery for hepatocellular carcinoma treatment and immunomodulatory effect. Phytomedicine. 2021, 80, 153356.
|
[56] |
Ma, Z.; Fan, Y.Q.; Wu, Y.M.; Kebebe, D.; Zhang, B.; Lu, P.; Pi, J.X.; Liu, Z.D. Traditional Chinese medicine-combination therapies utilizing nanotechnology-based targeted delivery systems: a new strategy for antitumor treatment. Int. J. Nanomed. 2019, 14, 2029–2053.
|
[57] |
Zhang, Z.; Qian, H.Q.; Huang, J.; Sha, H.Z.; Zhang, H.; Yu, L.X.; Liu, B.R.; Hua, D.; Qian, X.P. Anti-EGFR-iRGD recombinant protein modified biomimetic nanoparticles loaded with gambogic acid to enhance targeting and antitumor ability in colorectal cancer treatment. Int. J. Nanomed. 2018, 13, 4961–4975.
|
[58] |
Wang, H.J.; Wu, J.Z.; Williams, G.R.; Fan, Q.; Niu, S.W.; Wu, J.R.; Xie, X.T.; Zhu, L.M. Platelet-membrane-biomimetic nanoparticles for targeted antitumor drug delivery. J. Nanobiotechnol. 2019, 17, 1–16.
|
[59] |
Shang, Y.H.; Wang, Q.H.; Wu, B.; Zhao, Q.Q.; Li, J.; Huang, X.Y.; Chen, W.S.; Gui, R. Platelet-membrane-camouflaged black phosphorus quantum dots enhance anticancer effect mediated by apoptosis and autophagy. ACS Appl. Mater. Interfaces. 2019, 11, 28254–28266.
|
[60] |
Zhang, C.G.; Zhu, Q.L.; Zhou, Y.; Liu, Y.; Chen, W.L.; Yuan, Z.Q.; Yang, S.D.; Zhou, X.F.; Zhu, A.J.; Zhang, X.N.; Jin, Y. N-Succinyl-chitosan nanoparticles coupled with low-density lipoprotein for targeted osthole-loaded delivery to low-density lipoprotein receptor-rich tumors. Int. J. Nanomed. 2014, 9, 2919–2932.
|
[61] |
Li, C.Y.; Zhang, D.R.; Guo, H.J.; Hao, L.L.; Zheng, D.D.; Liu, G.P.; Shen, J.Y.; Tian, X.N.; Zhang, Q. Preparation and characterization of galactosylated bovine serum albumin nanoparticles for liver-targeted delivery of oridonin. Int. J. Pharm. 2013, 448, 79–86.
|
[62] |
Liu, H.A.; Shen, M.; Zhao, D.; Ru, D.; Duan, Y.R.; Ding, C.H.; Li, H. The effect of triptolide-loaded exosomes on the proliferation and apoptosis of human ovarian cancer SKOV3 cells. BioMed Res. Int. 2019, 2019, 1–14.
|
[63] |
Li, L.H.; He, D.; Guo, Q.Q.; Zhang, Z.; Ru, D.; Wang, L.T.; Gong, K.; Liu, F.F.; Duan, Y.; Li, H. Exosome-liposome hybrid nanoparticle codelivery of TP and miR497 conspicuously overcomes chemoresistant ovarian cancer. J. Nanobiotechnol. 2022, 20, 50.
|
[64] |
Duan, Y.Y.; Liu, P.R.; Huo, T.T.; Liu, S.X.; Ye, S.; Ye, Z.W. Application and development of intelligent medicine in traditional Chinese medicine. Curr. Med. Sci. 2021, 41, 1116–1122.
|
[65] |
Peng, F.; Liao, M.R.; Qin, R.; Zhu, S.O.; Peng, C.; Fu, L.L.; Chen, Y.; Han, B. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct. Target. Ther. 2022, 7, 286.
|
[1] | 桑永浩, 贠捷, 代丽娟, 宋立群. 中药灌肠治疗慢性肾脏病的研究进展[J]. 中国药学(英文版), 2024, 33(4): 305-315. |
[2] | 马立威, 陈哲, 施国善, 王玉静, 陈颂, 倪世宇, 李京, 葛鹏玲, 刘吉成. 十枣汤急性毒性及抗肿瘤疗效评价[J]. 中国药学(英文版), 2024, 33(4): 329-338. |
[3] | 吴梦瑶, 刘璐, 张鹏, 张乐乐, 龚云, 杨秀伟. 基于网络药理学和实验验证研究补血益母丸治疗产后腹痛的作用机制[J]. 中国药学(英文版), 2023, 32(9): 691-703. |
[4] | 范博, 杨笑, 胡爽. 涡旋辅助-可切换型溶剂液相微萃取用于中药样品中肉桂酸衍生物的分析[J]. 中国药学(英文版), 2023, 32(7): 551-559. |
[5] | 葛永辉, 汪玲, 许粟, 姜天丽, 王金华. 顶空-气相色谱-离子迁移谱法直接鉴定人工栽培和野生中药材(半枫荷)中的挥发性化合物[J]. 中国药学(英文版), 2023, 32(5): 392-405. |
[6] | 陈培杰, 张云天. PTP1B抑制肝纤维化逆转期TRAIL诱导的肝星状细胞凋亡[J]. 中国药学(英文版), 2023, 32(11): 867-880. |
[7] | 李楷, 唐冰洁, 柴新龙, 平洋, 王丽红, 苏瑾. 唾液酸功能化靶向给药系统: 与唾液酸结合免疫球蛋白样凝集素或选择素受体结合的肿瘤和炎症治疗进展[J]. 中国药学(英文版), 2023, 32(10): 773-795. |
[8] | 刘良裕, 杨宇珂, 杜肖, 吴桐, 王建农. 白英中三个未被报道的甾体糖苷生物碱及其抗肿瘤活性[J]. 中国药学(英文版), 2022, 31(3): 192-201. |
[9] | 姚昆鹏, 张道平, 刘起立, 蔡虎志, 陈青扬, 陈新宇. 整合生物信息学鉴定与分析急性心肌梗死的特征基因及潜在中药预测[J]. 中国药学(英文版), 2022, 31(12): 912-927. |
[10] | 孙颖光, 岳圆圆, 邵杰敏, 高萌, 邓艳茹, 冯运佳. 康复新液与西瓜霜治疗复发性口腔溃疡疗效比较的meta分析[J]. 中国药学(英文版), 2022, 31(10): 761-772. |
[11] | 高涛, 刘蕾, 吴燕, 杜权. 传统中药王氏保赤丸的临床前毒理研究[J]. 中国药学(英文版), 2022, 31(1): 31-46. |
[12] | 许士琪, 朱礼岩, 郝超, 刘文倩, 陈成龙, 陈泳怡, 刘爱芹. 一种新型含氨基酸基团替加氟前药的合成及其抗肿瘤活性评价[J]. 中国药学(英文版), 2021, 30(9): 743-753. |
[13] | 黄聪, 吴霭琳, 海沙尔江·吾守尔, 徐子悦, 张逸晨, 管晓东, 史录文. 中国浙江省级医保报销对于靶向抗肿瘤药使用的影响: 一项带对照的间断时间序列分析[J]. 中国药学(英文版), 2021, 30(7): 590-597. |
[14] | 汪子翔, 张宜凡, 杜望春, 陈群力, 姚虹, 赵梅. 天然产物通过调节活性氧水平防治肿瘤的研究进展[J]. 中国药学(英文版), 2021, 30(6): 455-467. |
[15] | 王惊雷, 宋柯, 潘昊, 刘洋, 王大壮, 陈立江. 纳米药物在肿瘤治疗中的现状和挑战[J]. 中国药学(英文版), 2021, 30(5): 359-380. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||