[1] |
Scott, C.R. The genetic tyrosinemias. Am. J. Med. Genet. C. 2006, 142C, 121–126.
|
[2] |
Lindstedt, S.; Holme, E.; Lock, E.A.; Hjalmarson, O.; Strandvik, B. Treatment of hereditary tyrosinaemia type I by inhibition of 4-hydroxyphenylpyruvate dioxygenase. Lancet. 1992, 340, 813–817.
|
[3] |
Komor, A.C.; Kim, Y.B.; Packer, M.S.; Zuris, J.A.; Liu, D.R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016, 533, 420–424.
|
[4] |
Gaudelli, N.M.; Komor, A.C.; Rees, H.A.; Packer, M.S.; Badran, A.H.; Bryson, D.I.; Liu, D.R. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage. Nature. 2017, 551, 464–471.
|
[5] |
Ryu, S.M.; Koo, T.; Kim, K.; Lim, K.; Baek, G.; Kim, S.T.; Kim, H.S.; Kim, D.E.; Lee, H.; Chung, E.; Kim, J.S. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat. Biotechnol. 2018, 36, 536–539.
|
[6] |
Rothgangl, T.; Dennis, M.K.; Lin, P.J.C.; Oka, R.; Witzigmann, D.; Villiger, L.; Qi, W.H.; Hruzova, M.; Kissling, L.; Lenggenhager, D.; Borrelli, C.; Egli, S.; Frey, N.; Bakker, N.; Walker, J.A. 2nd, Kadina, A.P.; Victorov, D.V.; Pacesa, M.; Kreutzer, S.; Kontarakis, Z.; Moor, A.; Jinek, M.; Weissman, D.; Stoffel, M.; van Boxtel, R.; Holden, K.; Pardi, N.; Thöny, B.; Häberle, J.; Tam, Y.K.; Semple, S.C.; Schwank, G. In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nat. Biotechnol. 2021, 39, 949–957.
|
[7] |
Musunuru, K.; Chadwick, A.C.; Mizoguchi, T.; Garcia, S.P.; DeNizio, J.E.; Reiss, C.W.; Wang, K.; Iyer, S.; Dutta, C.; Clendaniel, V.; Amaonye, M.; Beach, A.; Berth, K.; Biswas, S.; Braun, M.C.; Chen, H.M.; Colace, T.V.; Ganey, J.D.; Gangopadhyay, S.A.; Garrity, R.; Kasiewicz, L.N.; Lavoie, J.; Madsen, J.A.; Matsumoto, Y.; Mazzola, A.M.; Nasrullah, Y.S.; Nneji, J.; Ren, H.L.; Sanjeev, A.; Shay, M.; Stahley, M.R.; Fan, S.H.Y.; Tam, Y.K.; Gaudelli, N.M.; Ciaramella, G.; Stolz, L.E.; Malyala, P.; Cheng, C.J.; Rajeev, K.G.; Rohde, E.; Bellinger, A.M.; Kathiresan, S. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in Primates. Nature. 2021, 593, 429–434.
|
[8] |
Liang, P.P.; Ding, C.H.; Sun, H.W.; Xie, X.W.; Xu, Y.W.; Zhang, X.Y.; Sun, Y.; Xiong, Y.Y.; Ma, W.B.; Liu, Y.X.; Wang, Y.L.; Fang, J.P.; Liu, D.; Zhou, S.Y.; Zhou, C.Q.; Huang, J.J. Correction of β-thalassemia mutant by base editor in human embryos. Protein. Cell. 2017, 8, 811–822.
|
[9] |
Zeng, Y.T.; Li, J.N.; Li, G.L.; Huang, S.S.; Yu, W.X.; Zhang, Y.; Chen, D.J.; Chen, J.; Liu, J.Q.; Huang, X.X. Correction of the Marfan syndrome pathogenic FBN1 mutation by base editing in human cells and heterozygous embryos. Mol. Ther. 2018, 26, 2631–2637.
|
[10] |
Song, C.Q.; Jiang, T.T.; Richter, M.; Rhym, L.H.; Koblan, L.W.; Zafra, M.P.; Schatoff, E.M.; Doman, J.L.; Cao, Y.Y.; Dow, L.E.; Zhu, L.J.; Anderson, D.G.; Liu, D.R.; Yin, H.; Xue, W. Adenine base editing in an adult mouse model of tyrosinaemia. Nat. Biomed. Eng. 2020, 4, 125–130.
|
[11] |
Lino, C.A.; Harper, J.C.; Carney, J.P.; Timlin, J.A. Delivering CRISPR: a review of the challenges and approaches. Drug Deliv. 2018, 25, 1234–1257.
|
[12] |
Pei, D.H. How do biomolecules cross the cell membrane? Acc. Chem. Res. 2022, 55, 309–318.
|
[13] |
Song, X.R.; Liu, C.; Wang, N.; Huang, H.; He, S.Y.; Gong, C.Y.; Wei, Y.Q. Delivery of CRISPR/Cas systems for cancer gene therapy and immunotherapy. Adv. Drug Deliv. Rev. 2021, 168, 158–180.
|
[14] |
Yan, J.Y.; Kang, D.D.; Turnbull, G.; Dong, Y.Z. Delivery of CRISPR-Cas9 system for screening and editing RNA binding proteins in cancer. Adv. Drug Deliv. Rev. 2022, 180, 114042.
|
[15] |
Li, J.; Røise, J.J.; He, M.M.; Das, R.; Murthy, N. Non-viral strategies for delivering genome editing enzymes. Adv. Drug Deliv. Rev. 2021, 168, 99–117.
|
[16] |
Cordeiro, R.A.; Serra, A.; Coelho, J.F.J.; Faneca, H. Poly(β-amino ester)-based gene delivery systems: from discovery to therapeutic applications. J. Control. Release. 2019, 310, 155–187.
|
[17] |
Chen, X.H.; Wang, S.; Chen, Y.X.; Xin, H.H.; Zhang, S.S.; Wu, D.; Xue, Y.N.; Zha, M.L.; Li, H.J.; Li, K.; Gu, Z.; Wei, W.; Ping, Y. Non-invasive activation of intratumoural gene editing for improved adoptive T-cell therapy in solid tumours. Nat. Nanotechnol. 2023, 18, 933–944.
|
[18] |
Rui, Y.; Wilson, D.R.; Choi, J.; Varanasi, M.; Sanders, K.; Karlsson, J.; Lim, M.; Green, J.J. Carboxylated branched poly(β-amino ester) nanoparticles enable robust cytosolic protein delivery and CRISPR-Cas9 gene editing. Sci. Adv. 2019, 5, eaay3255.
|
[19] |
Vetter, D.; Gallop, M.A. Strategies for the synthesis and screening of glycoconjugates. 1. A library of glycosylamines. Bioconjug. Chem. 1995, 6, 316–318.
|
[20] |
Goodwin, T.J.; Zhou, Y.Q.; Musetti, S.N.; Liu, R.H.; Huang, L. Local and transient gene expression primes the liver to resist cancer metastasis. Sci. Transl. Med. 2016, 8, 364ra153.
|
[21] |
Muhizi, T.; Coma, V.; Grelier, S. Synthesis and evaluation of N-alkyl-beta-D-glucosylamines on the growth of two wood fungi, Coriolus versicolor and Poria placenta. Carbohydr. Res. 2008, 343, 2369–2375.
|
[22] |
Lin, M.; Yang, Z.Z.; Yang, Y.L.; Peng, Y.W.; Li, J.J.; Du, Y.T.; Sun, Q.; Gao, D.T.; Yuan, Q.; Zhou, Y.; Chen, X.Y.; Qi, X.R. CRISPR-based in situ engineering tumor cells to reprogram macrophages for effective cancer immunotherapy. Nano Today. 2022, 42, 101359.
|
[23] |
D'Souza, A.A.; Devarajan, P.V. Asialoglycoprotein receptor mediated hepatocyte targeting—strategies and applications. J. Control. Release. 2015, 203, 126–139.
|
[24] |
Valencia, P.M.; Basto, P.A.; Zhang, L.F.; Rhee, M.; Langer, R.; Farokhzad, O.C.; Karnik, R. Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing. ACS Nano. 2010, 4, 1671–1679.
|