[1] |
Rajeev, A.; Siby, A.; Koottungal, M.J.; George, J.; John, F. Knocking down barriers: advances in siRNA delivery. Chem. Select. 2021, 6, 13350–13362.
|
[2] |
Petrilli, R.; Eloy, J.O.; de Souza, M.C.; Abriata Barcellos, J.P.; Marchetti, J.M.; Yung, B.; Lee, R.J. Lipid nanoparticles as non-viral vectors for siRNA delivery. Nanobiomater. Drug Deliv. 2016, 75–109.
|
[3] |
Setten, R.L.; Rossi, J.J.; Han, S.P. The Current state and future directions of RNAi-based therapeutics. Nat. Rev. Drug Discov. 2019, 18, 421–446.
|
[4] |
Akinc, A.; Maier, M.A.; Manoharan, M.; Fitzgerald, K.; Jayaraman, M.; Barros, S.; Ansell, S.; Du, X.Y.; Hope, M.J.; Madden, T.D.; Mui, B.L.; Semple, S.C.; Tam, Y.K.; Ciufolini, M.; Witzigmann, D.; Kulkarni, J.A.; van der Meel, R.; Cullis, P.R. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 2019, 14, 1084–1087.
|
[5] |
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25.
|
[6] |
Dowdy, S.F. Overcoming cellular barriers for RNA therapeutics. Nat. Biotechnol. 2017, 35, 222–229.
|
[7] |
Rahimi, P.; Mobarakeh, V.I.; Kamalzare, S.; SajadianFard, F.; Vahabpour, R.; Zabihollahi, R. Comparison of transfection efficiency of polymer-based and lipid-based transfection reagents. Bratisl. Lek. Listy. 2018, 119, 701–705.
|
[8] |
Yamano, S.; Dai, J.S.; Moursi, A.M. Comparison of transfection efficiency of nonviral gene transfer reagents. Mol. Biotechnol. 2010, 46, 287–300.
|
[9] |
Nolte, A.; Raabe, C.; Walker, T.; Simon, P.; Ziemer, G.; Wendel, H.P. Optimized basic conditions are essential for successful siRNA transfection into primary endothelial cells. Oligonucleotides. 2009, 19, 141–150.
|
[10] |
Gilleron, J.; Querbes, W.; Zeigerer, A.; Borodovsky, A.; Marsico, G.; Schubert, U.; Manygoats, K.; Seifert, S.; Andree, C.; Stöter, M.; Epstein-Barash, H.; Zhang, L.G.; Koteliansky, V.; Fitzgerald, K.; Fava, E.; Bickle, M.; Kalaidzidis, Y.; Akinc, A.; Maier, M.; Zerial, M. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol. 2013, 31, 638–646.
|
[11] |
Wittrup, A.; Ai, A.; Liu, X.; Hamar, P.; Trifonova, R.; Charisse, K.; Manoharan, M.; Kirchhausen, T.; Lieberman, J. Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown. Nat. Biotechnol. 2015, 33, 870–876.
|
[12] |
Yoo, J.W.; Hong, S.W.; Kim, S.; Lee, D.K. Inflammatory cytokine induction by siRNAs is cell type- and transfection reagent-specific. Biochem. Biophys. Res. Commun. 2006, 347, 1053–1058.
|
[13] |
Kleefeldt, J.M.; Pozarska, A.; Nardiello, C.; Pfeffer, T.; Vadász, I.; Herold, S.; Seeger, W.; Morty, R.E. Commercially available transfection reagents and negative control siRNA are not inert. Anal. Biochem. 2020, 606, 113828.
|
[14] |
Danielli, M.; Marinelli, R.A. Lipid-based transfection reagents can interfere with cholesterol biosynthesis. Anal. Biochem. 2016, 495, 1–2.
|
[15] |
Figueroa, E.; Bugga, P.; Asthana, V.; Chen, A.L.; Stephen Yan, J.; Evans, E.R.; Drezek, R.A. A mechanistic investigation exploring the differential transfection efficiencies between the easy-to-transfect SK-BR3 and difficult-to-transfect CT26 cell lines. J. Nanobiotechnol. 2017, 15, 1–15.
|
[16] |
Wang, S.; Tian, D. High transfection efficiency and cell viability of immune cells with nanomaterials-based transfection reagent. BioTechniques. 2022, 72, 219–224.
|
[17] |
Jensen, K.; Anderson, J.A.; Glass, E.J. Comparison of small interfering RNA (siRNA) delivery into bovine monocyte-derived macrophages by transfection and electroporation. Vet. Immunol. Immunopathol. 2014, 158, 224–232.
|
[18] |
Moore, J.C.; Atze, K.; Yeung, P.L.; Toro-Ramos, A.J.; Camarillo, C.; Thompson, K.; Ricupero, C.L.; Brenneman, M.A.; Cohen, R.I.; Hart, R.P. Efficient, high-throughput transfection of human embryonic stem cells. Stem Cell Res. Ther. 2010, 1, 1–11.
|
[19] |
Ma, Y.H.; Lin, H.F.; Qiu, C.H. High-efficiency transfection and siRNA-mediated gene knockdown in human pluripotent stem cells. Curr. Protoc. Stem Cell Biol. 2012, 21, 5C.2.1–5C.2.9.
|
[20] |
Keller, A.A.; Maeß, M.B.; Schnoor, M.; Scheiding, B.; Lorkowski, S. Transfecting macrophages. Macrophages. 2018, 187–195.
|
[21] |
Herb, M.; Farid, A.; Gluschko, A.; Krönke, M.; Schramm, M. Highly efficient transfection of primary macrophages with in vitro transcribed mRNA. J. Vis. Exp. 2019, e60143.
|
[22] |
Zhang, X.; Edwards, J.P.; Mosser, D.M. The expression of exogenous genes in macrophages: obstacles and opportunities. Macrophages Dendritic Cells. 2009, 123–143.
|