[1] |
Chen, B.; Pie, W.H.; Gui, L.; Bruford, E.; Monteiro, A. The HSP90 family of genes in the human genome: insights into their divergence and evolution. Genomics. 2005, 86, 627–637.
|
[2] |
Garg, G.; Khandelwal, A.; Blagg, B.S.J. Anticancer inhibitors of Hsp90 function. Adv. Cancer Res. 2016, 51–88.
|
[3] |
Guo, W.C.; Siegel, D.; Ross, D. Stability of the Hsp90 inhibitor 17AAG hydroquinone and prevention of metal-catalyzed oxidation. J. Pharm. Sci. 2008, 97, 5147–5157.
|
[4] |
He, Y.Q.; Yu, X.M. Synthesis of 4-des-hydroxyl clorobiocin analogues as possible bacterial DNA gyrase B and human Hsp90 inhibitors. J. Chin. Pharm. Sci. 2011, 20, 218–225.
|
[5] |
Mishra, S.J.; Liu, W.; Beebe, K.; Banerjee, M.; Kent, C.N.; Munthali, V.; Koren, J.; Taylor, J.A.; Neckers, L.M.; Holzbeierlein, J.; Blagg, B.S.J. The development of Hsp90β-selective inhibitors to overcome detriments associated with pan-Hsp90 inhibition. J. Med. Chem. 2021, 64, 1545–1557.
|
[6] |
Banerjee, M.; Hatial, I.; Keegan, B.M.; Blagg, B.S.J. Assay design and development strategies for finding Hsp90 inhibitors and their role in human diseases. Pharm. Therapeut. 2021, 221,107747.
|
[7] |
Chang, D.J.; An, H.C.; Kim, K.S.; Kim, H.H.; Jung, J.; Lee, J.M.; Kim, N.J.; Han, Y.T.; Yun, H.; Lee, S.J.; Lee, G.; Lee, S.; Lee, J.S.; Cha, J.H.; Park, J.H.; Park, J.W.; Lee, S.C.; Kim, S.G.; Kim, J.H.; Lee, H.Y.; Kim, K.W.; Suh, Y.G. Design, synthesis, and biological evaluation of novel deguelin-based heat shock protein 90 (HSP90) inhibitors targeting proliferation and angiogenesis. J. Med. Chem. 2012, 55, 10863–10884.
|
[8] |
Xu, Y.H.; Zou, Y.T.; Zhou, S.S.; Niu, M.M.; Zhang, Y.; Li, J.D.; Xu, Z.; Yang, L. Discovery of potent heat shock protein 90 (Hsp90) inhibitors: structure-based virtual screening, molecular dynamics simulation, and biological evaluation. J. Enzyme Inhib. Med. Chem. 2023, 38, 2220558.
|
[9] |
Lee, J.H.; Shin, S.C.; Seo, S.H.; Seo, Y.H.; Jeong, N.; Kim, C.W.; Kim, E.E.; Keum, G. Synthesis and in vitro antiproliferative activity of C5-benzyl substituted 2-amino-pyrrolo[2, 3-d]pyrimidines as potent Hsp90 inhibitors. Bioorg. Med. Chem. Lett. 2017, 27, 237–241.
|
[10] |
Zhao, Q.; Zhu, H.P.; Xie, X.; Mao, Q.; Liu, Y.Q.; He, X.H.; Peng, C.; Jiang, Q.L.; Huang, W. Novel HSP90-PI3K dual inhibitor suppresses melanoma cell proliferation by interfering with HSP90-EGFR interaction and downstream signaling pathways. Int. J. Mol. Sci. 2020, 21, 1845.
|
[11] |
Kesuma, D.; Siswandono.; Purwanto, B, T.; Rudyanto, M. and anticancer evaluation of N-benzoyl-N'-phenyltiourea derivatives against human breast cancer cells (T47D). J. Chin. Pharm. Sci. 2020, 29, 123–129.
|
[12] |
He, W.; Hu, H.X. BIIB021, an Hsp90 inhibitor: a promising therapeutic strategy for blood malignancies (Review). Oncol. Rep. 2018, 40, 3–15.
|
[13] |
Saif, M.W.; Takimoto, C.; Banerji, U.; Lamanna, N.; Castro, J.; O’Brien, S.; Stogard, C.; Von Hoff, D. A phase 1, dose-escalation, pharmacokinetic and pharmacodynamic study of BIIB021 administered orally in patients with advanced solid tumors. Clin. Cancer Res. 2014, 20, 445–455.
|
[14] |
Zhou, Y.; Bobba, K.N.; Lv, X.W.; Yang, D.; Velusamy, N.; Zhang, J.F.; Bhuniya, S. A biotinylated piperazine-rhodol derivative: a ‘turn-on’ probe for nitroreductase triggered hypoxia imaging. Anal. 2017, 142, 345–350.
|
[15] |
Ao, X.; Bright, S.A.; Taylor, N.C.; Elmes, R.B.P. 2-Nitroimidazole based fluorescent probes for nitroreductase; monitoring reductive stress in cellulo. Org. Biomol. Chem. 2017, 15, 6104–6108.
|
[16] |
Wu, G.R.; Xu, B.; Yang, Y.Q.; Zhang, X.Y.; Fang, K.; Ma, T.; Wang, H.; Xue, N.N.; Chen, M.; Guo, W.B.; Jia, X.H.; Wang, P.L.; Lei, H.M. Synthesis and biological evaluation of podophyllotoxin derivatives as selective antitumor agents. Eur. J. Med. Chem. 2018, 155, 183–196.
|
[17] |
Jiang, Y.Y.; Han, J.Y.; Yu, C.Z.; Vass, S.O.; Searle, P.F.; Browne, P.; Knox, R.J.; Hu, L.Q. Design, synthesis, and biological evaluation of cyclic and acyclic nitro-benzylphosphoramide mustards for E. coli nitroreductase activation. J. Med. Chem. 2006, 49, 4333–4343.
|
[18] |
Hu, L.Q.; Wu, X.H.; Han, J.Y.; Chen, L.; Vass, S.O.; Browne, P.; Hall, B.S.; Bot, C.; Gobalakrishnapillai, V.; Searle, P.F.; Knox, R.J.; Wilkinson, S.R. Synthesis and structure-activity relationships of nitrobenzyl phosphoramide mustards as nitroreductase-activated prodrugs. Bioorg. Med. Chem. Lett. 2011, 21, 3986–3991.
|
[19] |
Bhaumik, S.; Sekar, T.V.; Depuy, J.; Klimash, J.; Paulmurugan, R. Noninvasive optical imaging of nitroreductase gene-directed enzyme prodrug therapy system in living animals. Gene Ther. 2012, 19, 295–302.
|
[20] |
Zhang, X.; Li, X.; You, Q.D.; Zhang, X.J. Prodrug strategy for cancer cell-specific targeting: a recent overview. Eur. J. Med. Chem. 2017, 139, 542–563.
|
[21] |
Güngör, T.; Tokay, E.; Güven Gülhan, Ü.; Hacıoğlu, N.; Çelik, A.; Köçkar, F.; Ay, M. Prodrugs for nitroreductase based cancer therapy-4: towards prostate cancer targeting: synthesis of N-heterocyclic nitro prodrugs, Ssap-NtrB enzymatic activation and anticancer evaluation. Bioorg. Chem. 2020, 105, 104450.
|
[22] |
Güngör, T.; Önder, F.C.; Tokay, E.; Gülhan, Ü.G.; Hacıoğlu, N.; Tok, T.T.; Çelik, A.; Köçkar, F.; Ay, M. Prodrugs for nitroreductase based cancer therapy-2: novel amide/ntr combinations targeting pc3 cancer cells. Eur. J. Med. Chem. 2019, 171, 383–400.
|
[23] |
Prosser, G.A.; Copp, J.N.; Syddall, S.P.; Williams, E.M.; Smaill, J.B.; Wilson, W.R.; Patterson, A.V.; Ackerley, D.F. Discovery and evaluation of Escherichia coli nitroreductases that activate the anti-cancer prodrug CB1954. Biochem. Pharmacol. 2010, 79, 678–687.
|
[24] |
Jiang, Y.Y.; Han, J.Y.; Yu, C.Z.; Vass, S.O.; Searle, P.F.; Browne, P.; Knox, R.J.; Hu, L.Q. Design, synthesis, and biological evaluation of cyclic and acyclic nitrobenzylphosphoramide mustards for E. coli Nitroreductase activation. J. Med. Chem. 2006, 49, 4333–4343.
|
[25] |
Copp, J.N.; Mowday, A.M.; Williams, E.M.; Guise, C.P.; Ashoorzadeh, A.; Sharrock, A.V.; Flanagan, J.U.; Smaill, J.B.; Patterson, A.V.; Ackerley, D.F. Engineering a multifunctional nitroreductase for improved activation of prodrugs and PET probes for cancer gene therapy. Cell Chem. Biol. 2017, 24, 391–403.
|
[26] |
Williams, E.M.; Little, R.F.; Mowday, A.M.; Rich, M.H.; Chan-Hyams, J.V.E.; Copp, J.N.; Smaill, J.B.; Patterson, A.V.; Ackerley, D.F. Nitroreductase gene-directed enzyme prodrug therapy: insights and advances toward clinical utility. Biochem. J. 2015, 471, 131–153.
|
[27] |
Denny, W.A. Nitroreductase-based gdept. Curr. Pharm. Des. 2002, 8, 1349–1361.
|
[28] |
Çelik, A.; Yetiş, G. An unusually cold active nitroreductase for prodrug activations. Bioorg. Med. Chem. 2012, 20, 3540–3550.
|
[29] |
Tumer, T.B.; Onder, F.C.; Ipek, H.; Gungor, T.; Savranoglu, S.; Tok, T.T.; Celik, A.; Ay, M. Biological evaluation and molecular docking studies of nitro benzamide derivatives with respect to in vitro anti-inflammatory activity. Int. Immunopharmacol. 2017, 43, 129–139.
|
[30] |
Gungor, T.; Yetis, G.; Onder, F.C.; Tokay, E.; Tok, T.T.; Celik, A.; Ay, M.; Kockar, F. Prodrugs for nitroreductase based cancer therapy-1: metabolite profile, cell cytotoxicity and molecular modeling interactions of nitro benzamides with ssap-NtrB. Med. Chem. 2018, 14, 495–507.
|
[31] |
Shi, X.L.; Chang, H.X.; Grohmann, M.; Kiesman, W.F.; Kwok, D.I A. Process development of an N-benzylated chloropurine at the kilogram scale. Org. Process Res. Dev. 2015, 19, 437–443.
|
[32] |
Zhao, D.L.; Shen, D.W.; Chi, Y.T.; Liu, F.; Zou, L.B.; Zhu, H.B. Liriodendrin protects SH-SY5Y cells from dopamine-induced cytotoxicity. J. Chin. Pharm. Sci. 2008, 16, 294–299.
|
[33] |
Feng, M.; Yang, X.G. The involvement of signaling activation of protein kinase C in gadolinium chloride-induced cell survival and cell cycle progression in NIH3T3 cells. J. Chin. Pharm. Sci. 2014, 23, 772–777.
|