中国药学(英文版) ›› 2023, Vol. 32 ›› Issue (4): 302-316.DOI: 10.5246/jcps.2023.04.027
邱海莹, 张梦迪, 贾海燕, 周梦露, 卢洪杰, 吴燕*()
收稿日期:
2022-11-27
修回日期:
2022-12-14
接受日期:
2023-01-16
出版日期:
2023-04-29
发布日期:
2023-04-29
通讯作者:
吴燕
作者简介:
基金资助:
Haiying Qiu, Mengdi Zhang, Haiyan Jia, Menglu Zhou, Hongjie Lu, Yan Wu*()
Received:
2022-11-27
Revised:
2022-12-14
Accepted:
2023-01-16
Online:
2023-04-29
Published:
2023-04-29
Contact:
Yan Wu
摘要:
慢性肾功能衰竭(CRF)是一个世界性的公共卫生问题。目前,可供选择的治疗方法有限。健肾颗粒在空军特色中心临床应用多年,疗效显著。本文探讨健肾颗粒对慢性肾衰大鼠(chronic renal failure, CRF)的治疗作用。建立5/6肾切除慢性肾衰大鼠模型, 尿毒清为阳性对照。尿毒清组给予3.12 mg/g/d混悬液灌胃, 健肾颗粒低、中、高剂量组分别给予0.96、1.92、3.84 mg/g/d混悬液灌胃, 模型组给予等体积的生理盐水, 共给药8周。治疗期间, 观察大鼠的行为状态、体质量变化; 测定各组大鼠血清肌酐、尿素氮、24 h尿蛋白含量; 光镜下观察肾组织病理变化; 蛋白免疫迹法、qRT-PCR检测肾组织中TGF-β1表达量。建立过氧化氢(H2O2)诱导的人类肾小管上皮细胞(Human kidney cells, HKC)氧化损伤细胞模型, 给予健肾颗粒, 试剂盒法检测细胞存活率, 流式细胞术检测线粒体膜电位(mitochondrial membrane potential, MMP)、活性氧(reactive oxygen species, ROS)和Ca2+水平,蛋白免疫迹法、RT-PCR检测细胞TGF-β1表达量。健肾颗粒能降低CRF大鼠血清肌酐、尿素氮、24 h尿蛋白。肾组织病理学检查显示健肾颗粒对肾损伤有改善作用。健肾颗粒可显著降低CRF大鼠TGF-β1 (P < 0.05)水平。给予健肾颗粒处理后, HKC细胞活力和MMP水平升高, ROS和Ca2+水平明显降低。TGF-β1表达量下降。健肾颗粒对CRF大鼠肾功能具有保护作用, 可缓解肾衰症状。
Supporting:
邱海莹, 张梦迪, 贾海燕, 周梦露, 卢洪杰, 吴燕. 健肾颗粒对5/6肾切除大鼠的初步药效学研究[J]. 中国药学(英文版), 2023, 32(4): 302-316.
Haiying Qiu, Mengdi Zhang, Haiyan Jia, Menglu Zhou, Hongjie Lu, Yan Wu. Preliminary study of the mechanism underlying how Jianshen granules ameliorate renal failure in 5/6 nephrectomy model rats[J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(4): 302-316.
Figure 1. Scr and BUN levels of the rats in sham and model groups prior to administration of the medicine. Each value is expressed as mean ± S.E.M (n = 6). *P < 0.05 compared with the model group. Scr, serum creatinine; BUN, blood urea nitrogen.
Figure 3. Effects of Jianshen granules on rats subjected to 5/6 Nx. The levels of the following biochemical parameters were investigated: (A) BUN; (B) Scr; (C) SOD; (D) Upr. Each value is expressed as mean ± S.E.M (n = 6). aP < 0.01, bP < 0.05, compared with Sham group; cP < 0.01, dP < 0.05, compared with model group; eP < 0.01, fP < 0.05, compared with UCG group. 5/6 Nx, 5/6 nephrectomy; BUN, blood urea nitrogen; SCr, serum creatinine; SOD, superoxide dismutase; UPr, urine protein.
Figure 4. Histopathological changes in renal tissue obtained from 5/6 nephrectomized rats. Shown are the results from (A) H&E staining; (B) Masson's staining (magnification, ×200). The black arrows represent tubular lesions, such as tubulointerstitial infiltration by inflammatory cells, tubular dilatation, tubular atrophy, and tubulointerstitial fibrosis; (C) Scores of renal lesion tissue. (a) Sham group; (b) Model group; (c) J–L group; (d) J–M group; (e) J–H group; (f) UCG group.
Figure 5. Effect of Jianshen granules on the concentration of TGF-β1 in the kidney tissues. (A) Western blotting analysis of TGF-β1; (B) mRNA expression of TGF-β1. Each value is expressed as mean ± S.E.M (n = 6). *P < 0.05; **P < 0.01 compared with the model group. TGF-β1, transforming growth factor-β1. The Figure of 6A was cropped. aP < 0.01, bP < 0.05, compared with Sham group; cP < 0.01, dP < 0.05, compared with model group; eP < 0.01, fP < 0.05, compared with UCG group.
Figure 6. Effects of Jianshen granules on the viability of HKC cells. Values are presented as mean ± S.E.M (n = 3). cP < 0.01, dP < 0.05, compared with H2O2 group; eP < 0.01, fP < 0.05, compared with UCG group.
Figure 7. Effects of Jianshen granules on H2O2-induced oxidative stress in HKC cells. Shown are the results of experiments that investigated (A) the extent of apoptosis; (B) level of ROS; (C) level of Ca2+; and (D) level of MMP. ROS, reactive oxygen species; MMP, mitochondrial membrane potential. aP < 0.01, bP < 0.05, compared with Control group; cP < 0.01, dP < 0.05, compared with H2O2 group.
Figure 8. Effect of Jianshen granules on the concentration of TGF-β1 in the H2O2-induced apoptosis of HKC cells. The results were investigated by (A) Western blotting analysis of TGF-β1 and (B) mRNA expression of TGF-β1. Each value was expressed as mean ± S.E.M (n = 3). aP < 0.01, bP < 0.05, compared with Control group; cP < 0.01, dP < 0.05, compared with H2O2 group.
[1] |
Liu, M.Y.; Park, J.; Wu, X.X.; Li, Y.W.; Tran, Q.; Mun, K.; Lee, Y.J.; Hur, G.M.; Wen, A.D.; Park, J. Shen-Kang protects 5/6 nephrectomized rats against renal injury by reducing oxidative stress through the MAPK signaling pathways. Int. J. Mol. Med. 2015, 36, 975–984.
|
[2] |
Zhang, L.X.; Wang, F.; Wang, L.; Wang, W.K.; Liu, B.C.; Liu, J.; Chen, M.H.; He, Q.; Liao, Y.H.; Yu, X.Q.; Chen, N.; Zhang, J.E.; Hu, Z.; Liu, F.Y.; Hong, D.Q.; Ma, L.J.; Liu, H.; Zhou, X.L.; Chen, J.H.; Pan, L.; Chen, W.; Wang, W.M.; Li, X.M.; Wang, H.Y. Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet. 2012, 379, 815–822.
|
[3] |
Kontomanolis, E.N.; Panagoutsos, S.; Pasadakis, P.; Koukouli, Z.; Liberis, A. Chronic renal failure, diabetes mellitus type-II, and gestation: an overwhelming combination. Clin. Exp. Obstet. Gynecol. 2016, 43, 276–278.
|
[4] |
Khoury, T.; Tzukert, K.; Abel, R.; Abu Rmeileh, A.; Levi, R.; Ilan, Y. The gut-kidney axis in chronic renal failure: a new potential target for therapy. Hemodial. Int. 2017, 21, 323–334.
|
[5] |
Neto, J.R.S.; Figueiredo E Castro, L.M.; Santos de Oliveira, F.; Silva, A.M.; Maria Dos Reis, L.; Quirino, A.P.A.; Dragosavac, D.; Kosour, C. Comparison between two physiotherapy protocols for patients with chronic kidney disease on dialysis. J. Phys. Ther. Sci. 2016, 28, 1644–1650.
|
[6] |
Impellizzeri, D.; Esposito, E.; Attley, J.; Cuzzocrea, S. Targeting inflammation: new therapeutic approaches in chronic kidney disease (CKD). Pharmacol. Res. 2014, 81, 91–102.
|
[7] |
Brunet, P. Treatment of chronic kidney failure by haemodialysis. Soins. 2018, 63, 21–23.
|
[8] |
Guan, Y.; Wu, X.X.; Duan, J.L.; Yin, Y.; Guo, C.; Wei, G.; Wang, Y.H.; Zhu, Y.R.; Weng, Y.; Xi, M.M.; Wen, A.D. Effects and mechanism of combination of Rhein and danshensu in the treatment of chronic kidney disease. Am. J. Chin. Med. 2015, 43, 1381–1400.
|
[9] |
Xu, L.M.; Ma, J.W.; Chen, B.; Hu, H.X.; Wei, H.L.; Zhang, W.L.; Zhi, Y.; Ma, X.Y.; Hou, J. Clinical observation on Jianshen Granules combined with syndrome differentiation and treatment on chronic renal failure. J. Beijing. Univ. Tradit. Chin. Med. 2005, 28, 83–85.
|
[10] |
Xu, L.M.; Ma, J.W.; Ma, X.Y. Effect of Jianshen Granule on Kidney TGF-β1, ET-1mRNA and Function of Rats with Diabetic Nephrosis (DN). J. Zhejiang. Univ. Tradit. Chin. Med. 2010, 34, 307–309.
|
[11] |
Suzuki, Y.; Yamaguchi, I.; Onoda, N.; Saito, T.; Myojo, K.; Imaizumi, M.; Takada, C.; Kimoto, N.; Takaba, K.; Yamate, J. Differential renal glomerular changes induced by 5/6 nephrectomization between common marmoset monkeys (Callithrix jacchus) and rats. Exp. Toxicol. Pathol. 2013, 65, 667–676.
|
[12] |
Xiao, X.Y.; Mo, L.Q.; Song, S.L.; Qin, M.; Yang, X.X. Compound Huang Gan delays chronic renal failure after 5/6 nephrectomy in rats. J. South. Med. Univ. 2014, 34, 1661–1667.
|
[13] |
D’Apolito, M.; Du, X.; Pisanelli, D.; Pettoello-Mantovani, M.; Campanozzi, A.; Giacco, F.; Maffione, A.B.; Colia, A.L.; Brownlee, M.; Giardino, I. Urea-induced ROS cause endothelial dysfunction in chronic renal failure. Atherosclerosis. 2015, 239, 393–400.
|
[14] |
Wang, Y.; Han, B.; Ding, J.; Qiu, C.; Wang, W. Endoplasmic reticulum stress mediates osteocyte death under oxygen-glucose deprivation in vitro. Acta Histochem. 2020, 122, 151577.
|
[15] |
Tang, P.C.T.; Zhang, Y.Y.; Chan, M.K.K.; Lam, W.W.Y.; Chung, J.Y.F.; Kang, W.; To, K.F.; Lan, H.Y.; Tang, P.M.K. The emerging role of innate immunity in chronic kidney diseases. Int. J. Mol. Sci. 2020, 21, 4018.
|
[16] |
Rapa, S.F.; Di Iorio, B.R.; Campiglia, P.; Heidland, A.; Marzocco, S. Inflammation and oxidative stress in chronic kidney disease-potential therapeutic role of minerals, vitamins and plant-derived metabolites. Int. J. Mol. Sci. 2019, 21, 263.
|
[17] |
Zhu, X.T.; Chen, Z.Q. The improvement effects of Yiqi Huashi Tongluo Formula on oxidative stress and renal fibrosis of experimental CRF rats. Chin. J. Appl. Physiol. 2020, 36, 67–72.
|
[18] |
Yang, X.M.; Hu, C.L.; Wang, S.J.; Chen, Q. Clinical efficacy and safety of Chinese herbal medicine for the treatment of patients with early diabetic nephropathy: a protocol for systematic review and meta-analysis. Medicine. 2020, 99, e20678.
|
[19] |
Khan, Z.; Pandey, M. Role of kidney biomarkers of chronic kidney disease: an update. Saudi J. Biol. Sci. 2014, 21, 294–299.
|
[20] |
Ma, W.; Wang, K.J.; Cheng, C.S.; Yan, G.Q.; Lu, W.L.; Ge, J.F.; Cheng, Y.X.; Li, N. Bioactive compounds from Cornus officinalis fruits and their effects on diabetic nephropathy. J. Ethnopharmacol. 2014, 153, 840–845.
|
[21] |
Wang, Z.H.; Zhang, B.; Chen, Z.; He, Y.; Ru, F.; Liu, P.H.; Chen, X. The long noncoding RNA myocardial infarction-associated transcript modulates the epithelial-mesenchymal transition in renal interstitial fibrosis. Life Sci. 2020, 241, 117187.
|
[22] |
Meng, X.M.; Nikolic-Paterson, D.J.; Lan, H.Y. TGF-β: the master regulator of fibrosis. Nat. Rev. Nephrol. 2016, 12, 325–338.
|
[23] |
Sureshbabu, A.; Muhsin, S.A.; Choi, M.E. TGF-β signaling in the kidney: profibrotic and protective effects. Am. J. Physiol. Renal Physiol. 2016, 310, F596–F606.
|
[24] |
Small, D.M.; Bennett, N.C.; Roy, S.; Gabrielli, B.G.; Johnson, D.W.; Gobe, G.C. Oxidative stress and cell senescence combine to cause maximal renal tubular epithelial cell dysfunction and loss in an in vitro model of kidney disease. Nephron Exp. Nephrol. 2012, 122, 123–130.
|
[25] |
Small, D.M.; Coombes, J.S.; Bennett, N.; Johnson, D.W.; Gobe, G.C. Oxidative stress, anti-oxidant therapies and chronic kidney disease. Nephrology (Carlton). 2012, 17, 311–321.
|
[26] |
Turan, B. Role of antioxidants in redox regulation of diabetic cardiovascular complications. Curr. Pharm. Biotechnol. 2010, 11, 819–836.
|
[27] |
Lee, K.E.; Kim, E.Y.; Kim, C.S.; Choi, J.S.; Bae, E.H.; Ma, S.K.; Park, J.S.; Jung, Y.D.; Kim, S.H.; Lee, J.U.; Kim, S.W. Macrophage-stimulating protein attenuates hydrogen peroxide-induced apoptosis in human renal HK-2 cells. Eur. J. Pharmacol. 2013, 715, 304–311.
|
[28] |
Poprac, P.; Jomova, K.; Simunkova, M.; Kollar, V.; Rhodes, C.J.; Valko, M. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol. Sci. 2017, 38, 592–607.
|
[29] |
Duan, R.S.; Xing, X.; Qi, Y.C.; Yin, N.; Hao, H.Y.; Chu, H.S.; Gao, Y.; Wang, W.P.; Lv, P.Y. Taxane-derived compounds protect SK-N-SH cells against oxidative stress injury induced by H2O2. Neurol. Res. 2017, 39, 632–639.
|
[30] |
Huang, C.C.; Aronstam, R.S.; Chen, D.R.; Huang, Y.W. Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicol. In Vitro. 2010, 24, 45–55.
|
[31] |
Liang, W.Z.; Chou, C.T.; Chang, H.T.; Cheng, J.S.; Kuo, D.H.; Ko, K.C.; Chiang, N.N.; Wu, R.F.; Shieh, P.; Jan, C.R. The mechanism of honokiol-induced intracellular Ca2+ rises and apoptosis in human glioblastoma cells. Chem. Biol. Interact. 2014, 221, 13–23.
|
[32] |
Zhang, X.; Lee, M.D.; Wilson, C.; McCarron, J.G. Hydrogen peroxide depolarizes mitochondria and inhibits IP3-evoked Ca2+ release in the endothelium of intact arteries. Cell Calcium. 2019, 84, 102108.
|
[33] |
Li, Y.F.; Ren, K. The mechanism of contrast-induced acute kidney injury and its association with diabetes mellitus. Contrast Media Mol. Imaging. 2020, 2020, 3295176.
|
[34] |
Miao, J.H.; Liu, J.F.; Niu, J.; Zhang, Y.F.; Shen, W.W.; Luo, C.W.; Liu, Y.H.; Li, C.J.; Li, H.Y.; Yang, P.L.; Liu, Y.H.; Hou, F.F.; Zhou, L.L. Wnt/β-catenin/RAS signaling mediates age-related renal fibrosis and is associated with mitochondrial dysfunction. Aging Cell. 2019, 18, e13004.
|
[35] |
Xu, S.P.; Chamseddinea. A.H.; Carrella. S.; Miller. F.J. Nox4 NADPH oxidase contributes to smooth muscle cell phenotypes associated with unstable atherosclerotic plaques. Redox Biol. 2014, 2, 642–650.
|
[36] |
Liu, X.; Miao, J.H.; Wang, C.; Zhou, S.; Chen, S.Q.; Ren, Q.; Hong, X.; Wang, Y.P.; Hou, F.F.; Zhou, L.L.; Liu, Y.H. Tubule-derived exosomes play a central role in fibroblast activation and kidney fibrosis. Kidney Int. 2020, 97, 1181–1195.
|
[37] |
Gewin, L.S. Renal fibrosis: primacy of the proximal tubule. Matrix Biol. 2018, 68/69, 248–262.
|
[38] |
Duffield, J.S. Cellular and molecular mechanisms in kidney fibrosis. J. Clin. Invest. 2014, 124, 2299–2306.
|
[39] |
Zhu, J.H.; Wen, K. Astragaloside IV inhibits TGF-β1-induced epithelial-mesenchymal transition through inhibition of the PI3K/Akt/NF-κB pathway in gastric cancer cells. Phytother. Res. 2018, 32, 1289–1296.
|
[40] |
Loeffler, I.; Wolf, G. Transforming growth factor-β and the progression of renal disease. Nephrol. Dial. Transplant. 2014, 29, i37–i45.
|
[1] | 马彦荣, 辛明彦, 吴娟丽, 王菪菊, 王欢, 武新安. 腺嘌呤诱导的慢性肾损伤大鼠体内肾脏排泄通道变化[J]. 中国药学(英文版), 2021, 30(4): 319-333. |
[2] | 卢远航*, 常明向, 邓安国. 苦参碱对腺嘌呤诱导大鼠慢性肾小管-间质纤维化的作用[J]. , 2006, 15(1): 59-65. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||