http://jcps.bjmu.edu.cn

中国药学(英文版) ›› 2017, Vol. 26 ›› Issue (8): 545-555.DOI: 10.5246/jcps.2017.08.061

• 【研究论文】 •    下一篇

基于药效团模型的人多药耐药相关蛋白内源性底物的预测

刘园, 陈亚, 胡建星, 刘振明*, 张亮仁*   

  1. 北京大学医学部 药学院 天然药物与仿生药物国家重点实验室, 北京 100191
  • 收稿日期:2017-05-15 修回日期:2017-06-12 出版日期:2017-08-31 发布日期:2017-06-30
  • 通讯作者: Tel.: +86-010-82802567; +86-010-82805514, E-mail: zmliu@bjmu.edu.cn; liangren@bjmu.edu.cn
  • 基金资助:
    The National Natural Science Foundation of China (Grant No. 21272017 and 21572010).

In silico pharmacophore models to predict endogenous substrates for human multidrug resistance-associated proteins

Yuan Liu, Ya Chen, Jianxing Hu, Zhenming Liu*, Liangren Zhang*   

  1. State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
  • Received:2017-05-15 Revised:2017-06-12 Online:2017-08-31 Published:2017-06-30
  • Contact: Tel.: +86-010-82802567; +86-010-82805514, E-mail: zmliu@bjmu.edu.cn; liangren@bjmu.edu.cn
  • Supported by:
    The National Natural Science Foundation of China (Grant No. 21272017 and 21572010).

摘要:

多药耐药相关蛋白(Multidrug resistance-associated proteins, MRPs)是在人体广泛分布的一类跨膜转运蛋白。MRPs可选择性和特异性地将不同结构的药物、药物结合物及代谢物和其他的小分子化合物转到细胞外,使临床应用的抗肿瘤药物产生耐药性。因此,准确预测MRPs可转运的特异性底物分子特征,对于抗肿瘤药物的抗耐药性研发具有重要意义。本文利用MRPs7个亚型(包括MRP1, -2, -3, -4, -5, -6-8)已知的底物分子和MRPs整个家族共同转运的底物分子,应用CATALYST软件,基于分子共同特征分别构建了MRPs各亚型和整个家族的药效团模型。并利用DUD-E生成诱饵分子用于验证和选取药效团模型,选择AUC(area under curve)打分最好的药效团模型对人体内源性代谢数据库(HMDB)进行筛选,筛选获得的多个分子得到了文献的验证。通过对药效团筛选出的分子和已知的底物分子进行物理性质(ALOGP、分子极性表面、分子体积、分子质量、氢键受体数和氢键给体数)和结构骨架的比较分析,发现两者: 1)两者在ALOGP、分子体积、分子质量上具有一致的分布趋势; 2)与其他亚型相比, MRP1的底物分子具有较高的脂溶性,这与MRP1药效团模型中具有两个疏水中心相一致; 3)两者在骨架特征上,具有相同的骨架结构或相似的骨架片段。

关键词: 多药耐药相关蛋白, 药效团, 内源性底物, CATALYST, 诱饵分子验证

Abstract:

Multidrug resistance-associated proteins (MRPs) can efflux structurally diverse drugs, drug conjugates, drug metabolites, as well as other small molecules out of the cells, and this is the main cause of producing multidrug resistance (MDR) of some anticancer drugs. Therefore, it is crucial to uncover the molecular features of MRPs substrates in developing anti-MDR cancer therapy.In the present study, common feature pharmacophore models were developed by employing CATALYST Pharmacophore Modeling and Analysis tools using substrates of MRPs, including MRP1, -2, -3, -4, -5, -6, -8 and MRPs family, respectively. The models were validated using independent decoy sets generated in DUD-E, and the ones with best AUC (area under the curve) scores were chosen to predict endogenous substrates by screening the Human Metabolome Database (HMDB). A number of molecules obtained by pharmacophore screening have been validated in the literatures. By comparing physical properties (ALOGP, Molecular_PolarSurfaceArea, Molecular_Volume, Molecular_Weight, Num_H_Acceptors, Num_H_Donors) and scaffold features of the screened candidates with the known substrates, we found that: 1) The two sets have consistent ALOGP, Molecule_Volume and Molecule_Weight distribution trend; 2) Substrates of MRP1 have a better lipophilicity than the other subtypes, which is consistent with the two hydrophobic centers on the MRP1 pharmacophore; 3) In the aspect of the scaffold structures, they have the identical or similar backbone fragments.

Key words: Multidrug resistance-associated proteins, Pharmacophore, Endogenous substrates, CATALYST, Decoys validation

中图分类号: 

Supporting:  

Table S1. Training set substrates for HipHop hypotheses generation (numbers below structures represent ChEMBL ID)
Name
Training set substrates structures
MRP1
 
MRP2
 
MRP3
 
MRP4
 
MRP5
 
MRP6
 
MRP8
 
MRPs
 
 
 
Table S2. Top ranked hypotheses of MRP1-6, MRP8 and MRPs pharmacophore
Name
Hypotheses rank
Features
Scores
MRP1
hypo1
HHAA
49.533
 
hypo2
HHAA
48.682
 
hypo3
HHAA
48.605
 
hypo4
HHAA
48.323
 
hypo5
HHAA
48.323
 
hypo6
HHAA
47.872
 
hypo7
HHAA
47.714
 
hypo8
HHAA
47.264
 
hypo9
HHAA
47.11
 
hypo10
HHAA
46.968
MRP2
hypo1
AAA
61.918
 
hypo2
AAA
61.918
 
hypo3
AAA
61.346
 
hypo4
AAA
61.01
 
hypo5
AAA
60.962
 
hypo6
AAA
60.767
 
hypo7
AAA
60.706
 
hypo8
AAA
60.493
 
hypo9
AAA
60.294
 
hypo10
AAA
59.89
MRP3
hypo1
DAA
65.895
 
hypo2
DAA
65.273
 
hypo3
DAA
65.244
 
hypo4
DAA
65.175
 
hypo5
AAA
65.175
 
hypo6
DAA
65.019
 
hypo7
AAA
64.668
 
hypo8
AAA
64.497
 
hypo9
DAA
64.445
 
hypo10
AAA
64.4
MRP4
hypo1
NDA
50.69
 
hypo2
NDA
50.67
 
hypo3
NDA
50.375
 
hypo4
NAA
49.335
 
hypo5
NDA
49.33
 
hypo6
NDA
49.266
 
hypo7
NDA
49.259
 
hypo8
NDA
49.255
 
hypo9
NDA
49.189
 
hypo10
NDA
49.138
MRP5
hypo1
NAAA
61.686
 
hypo2
NAAA
61.457
 
hypo3
NAAA
61.044
 
hypo4
NAAA
60.857
 
hypo5
NAAA
60.715
 
hypo6
NAAA
60.372
 
hypo7
NAAA
60.249
 
hypo8
NAAA
59.785
 
hypo9
NAAA
59.37
 
hypo10
NAAA
59.304
MRP6
hypo1
AAAAA
85.327
 
hypo2
AAAAA
85.288
 
hypo3
AAAAA
84.432
 
hypo4
AAAAA
84.426
 
hypo5
AAAAA
84.419
 
hypo6
AAAAA
84.361
 
hypo7
AAAAA
84.274
 
hypo8
AAAAA
84.17
 
hypo9
AAAAA
84.159
 
hypo10
AAAAA
84.046
MRP8
hypo1
NAA
51.598
 
hypo2
NAA
51.359
 
hypo3
NAA
50.389
 
hypo4
NAA
50.314
 
hypo5
NAA
49.878
 
hypo6
NAA
49.47
 
hypo7
NAA
49.409
 
hypo8
NAA
49.409
 
hypo9
NAA
49.465
 
hypo10
NAA
49.089
MRPs
hypo1
HHAAA
91.794
 
hypo2
HHAAA
91.794
 
hypo3
HHAAA
91.756
 
hypo4
HHAAA
91.671
 
hypo5
HHAAA
91.516
 
hypo6
HHAAA
91.458
 
hypo7
HHAAA
91.182
 
hypo8
HHAAA
91.182
 
hypo9
HHAAA
91.182
 
hypo10
HHAAA
91.173
Summary of the features definitions
A: HBA, hydrogen bond acceptor; H: hydrophobic; D: HBD, hydrogen bond donor; N: neg_ionizable.