Journal of Chinese Pharmaceutical Sciences ›› 2022, Vol. 31 ›› Issue (1): 55-67.DOI: 10.5246/jcps.2022.01.006
• Original articles • Previous Articles Next Articles
Lijuan Jiang2, Tingting Cao1, Ruoyi Yang1, Ying Li1, Lin Dong1, Shufan Yin1,*()
Received:
2021-07-17
Revised:
2021-08-11
Accepted:
2021-09-16
Online:
2022-01-12
Published:
2022-01-13
Contact:
Shufan Yin
Supporting:
Lijuan Jiang, Tingting Cao, Ruoyi Yang, Ying Li, Lin Dong, Shufan Yin. Design, synthesis, and biological evaluation of a series of novel cordycepin derivatives[J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(1): 55-67.
[1] |
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J. Clin. 2018, 68, 394–424.
|
[2] |
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA: A Cancer J. Clin. 2019, 69, 7–34.
|
[3] |
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J. Clin. 2018, 68, 394–424.
|
[4] |
Yu, H.M.; Wang, B.S.; Huang, S.C.; Duh, P.D. Comparison of protective effects between cultured Cordyceps militaris and natural Cordyceps sinensis against oxidative damage. J. Agric. Food Chem. 2006, 54, 3132–3138.
|
[5] |
Tsai, Y.J.; Lin, L.C.; Tsai, T.H. Pharmacokinetics of adenosine and cordycepin, a bioactive constituent of Cordyceps sinensis in rat. J. Agric. Food Chem. 2010, 58, 4638–4643.
|
[6] |
Chen, Y.; Chen, Y.C.; Lin, Y.T.; Huang, S.H.; Wang, S.M. Cordycepin induces apoptosis of CGTH W-2 thyroid carcinoma cells through the Calcium-Calpain-Caspase 7-PARP pathway. J. Agric. Food Chem. 2010, 58, 11645–11652.
|
[7] |
Aman, S.; Anderson, D.J.; Connolly, T.J.; Crittall, A.J.; Ji, G.J. From adenosine to 3’-deoxyadenosine: development and scale up. Org. Process. Res. Dev. 2000, 4, 601–605.
|
[8] |
Vodnala, S.K.; Lundbäck, T.; Yeheskieli, E.; Sjöberg, B.; Gustavsson, A.L.; Svensson, R.; Olivera, G.C.; Eze, A.A.; de Koning, H.P.; Hammarström, L.G.J.; Rottenberg, M.E. Structure-activity relationships of synthetic cordycepin analogues as experimental therapeutics for African trypanosomiasis. J. Med. Chem. 2013, 56, 9861–9873.
|
[9] |
Vodnala, S.K.; Lundbäck, T.; Yeheskieli, E.; Sjöberg, B.; Gustavsson, A.L.; Svensson, R.; Olivera, G.C.; Eze, A.A.; de Koning, H.P.; Hammarström, L.G.J.; Rottenberg, M.E. Structure-activity relationships of synthetic cordycepin analogues as experimental therapeutics for African trypanosomiasis. J. Med. Chem. 2013, 56, 9861–9873.
|
[10] |
Bouchain, G.; Leit, S.; Frechette, S.; Khalil, E.A.; Lavoie, R.; Moradei, O.; Woo, S.H.; Fournel, M.; Yan, P.T.; Kalita, A.; Trachy-Bourget, M.C.; Beaulieu, C.; Li, Z.M.; Robert, M.F.; MacLeod, A.R.; Besterman, J.M.; Delorme, D. Development of potential antitumor agents. synthesis and biological evaluation of a new set of sulfonamide derivatives as histone deacetylase inhibitors. J. Med. Chem. 2003, 46, 820–830.
|
[11] |
Morimoto, H.; Shimadzu, H.; Kushiyama, E.; Kawanishi, H.; Hosaka, T.; Kawase, Y.; Yasuda, K.; Kikkawa, K.; Yamauchi-Kohno, R.; Yamada, K. Potent and Selective ET-A Antagonists. 1. Syntheses and Structure–Activity Relationships of N-(6-(2-(Aryloxy)ethoxy)-4-pyrimidinyl)sulfonamide Derivatives. J. Med. Chem. 2001, 44, 3355–3368.
|
[12] |
Noreljaleel, A.E.M.; Wilhelm, A.; Bonnet, S.L.; van der Westhuizen, J.H. Synthesis and bioactivity of reduced chalcones containing sulfonamide side chains. J. Nat. Prod. 2018, 81, 41–48.
|
[13] |
Sato, K.; Takahagi, H.; Yoshikawa, T.; Morimoto, S.; Takai, T.; Hidaka, K.; Kamaura, M.; Kubo, O.; Adachi, R.; Ishii, T.; Maki, T.; Mochida, T.; Takekawa, S.; Nakakariya, M.; Amano, N.; Kitazaki, T. Discovery of a novel series of N-phenylindoline-5-sulfonamide derivatives as potent, selective, and orally bioavailable acyl CoA: monoacylglycerol acyltransferase-2 inhibitors. J. Med. Chem. 2015, 58, 3892–3909.
|
[14] |
Yang, P.; Wang, L.P.; Feng, R.T.; Almehizia, A.A.; Tong, Q.; Myint, K.Z.; Ouyang, Q.; Alqarni, M.H.; Wang, L.R.; Xie, X.Q. Novel triaryl sulfonamide derivatives as selective cannabinoid receptor 2 inverse agonists and osteoclast inhibitors: discovery, optimization, and biological evaluation. J. Med. Chem. 2013, 56, 2045–2058.
|
[15] |
Tsai, Y.J.; Lin, L.C.; Tsai, T.H. Pharmacokinetics of adenosine and cordycepin, a bioactive constituent of Cordyceps sinensis in rat. J. Agric. Food Chem. 2010, 58, 4638–4643.
|
[16] |
Bi, Y.M.; Li, H.; Yi, D.Z.; Sun, Y.X.; Bai, Y.; Zhong, S.; Song, Y.; Zhao, G.; Chen, Y. Cordycepin augments the chemosensitivity of human glioma cells to temozolomide by activating AMPK and inhibiting the AKT signaling pathway. Mol. Pharm. 2018, 15, 4912–4925.
|
[17] |
Wen, Z.X.; Du, X.F.; Meng, N.; Li, Y.J.; Mi, R.; Li, X.J.; Sun, Y.X.; Ma, S.H.; Li, S.Y. Tussah silkmoth pupae improve anti-tumor properties of Cordyceps militaris (L.) Link by increasing the levels of major metabolite cordycepin. RSC Adv. 2019, 9, 5480–5491.
|
[18] |
Khuntawee, W.; Amornloetwattana, R.; Vongsangnak, W.; Namdee, K.; Yata, T.; Karttunen, M.; Wong-Ekkabut, J. In silico and in vitro design of cordycepin encapsulation in liposomes for colon cancer treatment. RSC Adv. 2021, 11, 8475–8484.
|
[19] |
Singpoonga, N.; Rittiron, R.; Seang-On, B.; Chaiprasart, P.; Bantadjan, Y. Determination of adenosine and cordycepin concentrations in cordyceps militaris fruiting bodies using near-infrared spectroscopy. ACS Omega. 2020, 5, 27235–27244.
|
[20] |
Guianvarc'H, D.; Duca, M.; Boukarim, C.; Kraus-Berthier, L.; Léonce, S.; Pierré, A.; Pfeiffer, B.; Renard, P.; Arimondo, P.B.; Monneret, C.; Dauzonne, D. Synthesis and biological activity of sulfonamide derivatives of epipodophyllotoxin. J. Med. Chem. 2004, 47, 2365–2374.
|
[21] |
Morimoto, H.; Shimadzu, H.; Kushiyama, E.; Kawanishi, H.; Hosaka, T.; Kawase, Y.; Yasuda, K.; Kikkawa, K.; Yamauchi-Kohno, R.; Yamada, K. Potent and Selective ET-A Antagonists. 1. Syntheses and Structure–Activity Relationships of N-(6-(2-(Aryloxy)ethoxy)-4-pyrimidinyl)sulfonamide Derivatives. J. Med. Chem. 2001, 44, 3355–3368.
|
[1] | Yuxia Zhu, Lingjian Zhang, Yiming Hu, Weihua Liu, Liping Guan, Lin Lin. Study on synthesis of naringenin derivatives and cholinesterase inhibitory activity in marine Chinese medicine [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(8): 636-644. |
[2] | Bo Fan, Xiao Yang, Shuang Hu. Vortex-assisted switchable solvent liquid-phase microextraction for preconcentration of cinnamic acid derivatives in traditional Chinese medicine [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(7): 551-559. |
[3] | Suqian Cai, Kefeng Zhang, Xiaohua Cai. Bergenin: a versatile and readily available precursor for bioactive modifications [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(5): 333-350. |
[4] | Ao Sun, Zipeng Li, Ting Liu, Xiangbao Meng, Shuchun Li, Zhongjun Li. Improvement of Kdo's efficient large-scale chemical synthesis method [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(2): 97-107. |
[5] | Huijie Lv, Tuo Xv, Jun Peng, Gang Luo, Jianqin He, Sisi Yang, Tiancheng Zhang, Shuidong Feng, Hongyan Ling. Dihydromyricetin improves liver fat deposition in high-fat diet-induced obese mice [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(11): 824-839. |
[6] | Yuehua Liu, Zhangqin Xue, Jianming Wei, Ruomeng Wei, Baodong Yin, Aiqin Liu. Study on drug synthesis and activity of sodium olpadronate [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(11): 883-892. |
[7] | Shiqi Xu, Liyan Zhu, Chao Hao, Wenqian Liu, Chenglong Chen, Yongyi Chen, Aiqin Liu. Synthesis of a novel series of amino acid prodrugs based on tegafur and evaluation of their antitumor activity [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(9): 743-753. |
[8] | State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center. Cyclic peptide molecular biosynthesis-the group of Professor Ming Ma discovered the first catalytic isomerization/cyclic bifunctional thioesterase and analyzed its crystal structure [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(9): 778-779. |
[9] | Xueni Cai, Ge Fu, Martin Lepšík, Emanuele Paci, Yuan Guo, Zhongjun Li, Qing Li. Synthesis of a series of novel homo- and hetero-glycoclusters and their binding activities to DC-SIGN [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(11): 859-873. |
[10] | Beidou Zhou, Jiali Li, Baocheng Huang, Zihan Yu, Zetong Ma, Zhipeng Ruan, Qihong Cai, Dongbao Hu. Syntheses of phenyl benzoate compounds and their bioactivity investigation [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(11): 874-882. |
[11] | Xixi Li, Qian Liu, Tao Sheng, Junyi Liu, Xiaowei Wang. Pyridin-2(1H)-ones as HIV-1 NNRTIs: a combinatorial optimization strategy [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(2): 79-89. |
[12] | Wanjun Yan, Wenming Li, Decai Xiong, Xinshan Ye. Design, synthesis and evaluation of carbamate-containing sialyltransferase inhibitors [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(1): 29-44. |
[13] | Zhongyi Zhang, Hanxuan Wang, Guiyang Wang, Xueyang Ma, Tan Liu, Tongtong Geng, Xiaoxu Sun, Donghui Yang, Suwei Dong, Ming Ma. Synthesis of two substrate mimics of thioesterase in the biosynthesis of cyclic depsipeptide WS9326A [J]. Journal of Chinese Pharmaceutical Sciences, 2019, 28(9): 605-614. |
[14] | Xupeng Yang, Zhenzhen Yang, Lu Zhang, Qi Sun, Xianrong Qi. Tunable gold nanostar synthesis with surfactant-free system [J]. Journal of Chinese Pharmaceutical Sciences, 2019, 28(9): 641-649. |
[15] | Weihao Ma, Zhi Huang, Yanxing Jia. Improved synthesis of key intermediate of grayanotoxin III [J]. Journal of Chinese Pharmaceutical Sciences, 2019, 28(6): 402-407. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||