Journal of Chinese Pharmaceutical Sciences ›› 2021, Vol. 30 ›› Issue (6): 455-467.DOI: 10.5246/jcps.2021.06.035
• Review • Next Articles
Zixiang Wang1,2, Yifan Zhang1, Wangchun Du1, Qunli Chen1, Hong Yao1, Mei Zhao1,*()
Received:
2020-11-18
Revised:
2020-12-26
Accepted:
2021-03-10
Online:
2021-06-29
Published:
2021-06-29
Contact:
Mei Zhao
About author:
Zhao Mei received her Ph.D. from School of Pharmacy, Shanghai Jiao Tong University in 2010. She works at the Department of Pharmacy, Shanghai University of Medicine & Health Sciences, as an associate professor, and her research focuses on antitumor drugs and their drug delivery in oncology therapy. 赵梅, 2010年毕业于上海交通大学药学院, 获博士学位。现任上海健康医学院药学院副教授, 主要研究方向为抗肿瘤药物及其在肿瘤治疗中的药物递送。 |
Supporting:
Zixiang Wang, Yifan Zhang, Wangchun Du, Qunli Chen, Hong Yao, Mei Zhao. Recent progress of natural products in tumor prevention and treatment by regulating the reactive oxygen species level[J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(6): 455-467.
[1] |
Xu, Q.H.; He, C.L.; Xiao, C.S.; Chen, X.S. Reactive oxygen species (ROS) responsive polymers for biomedical applications. Macromol. Biosci. 2016, 16, 635–646.
|
[2] |
Glasauer, A.; Chandel, N.S. Targeting antioxidants for cancer therapy. Biochem. Pharmacol. 2014, 92, 90–101.
|
[3] |
Zhang, J.X.; Wang, X.L.; Vikash, V.; Ye, Q.; Wu, D.D.; Liu, Y.L.; Dong, W.G. ROS and ROS-mediated cellular signaling. Oxidat. Med. Cell Longev. 2016, 2016, 1–18.
|
[4] |
de Sá Junior, P.L.; Câmara, D.A.D.; Porcacchia, A.S.; Fonseca, P.M.M.; Jorge, S.D.; Araldi, R.P.; Ferreira, A.K. The roles of ROS in cancer heterogeneity and therapy. Oxidat. Med. Cell Longev. 2017, 2017, 2467940.
|
[5] |
Safe, S.; Kasiappan, R. Natural products as mechanism-based anticancer agents: sp transcription factors as targets. Phytother. Res. 2016, 30, 1723–1732.
|
[6] |
Galadari, S.; Rahman, A.; Pallichankandy, S.; Thayyullathil, F. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic. Biol. Med. 2017, 104, 144–164.
|
[7] |
Tong, L.Y.; Chuang, C.C.; Wu, S.Y.; Zuo, L. Reactive oxygen species in redox cancer therapy. Cancer Lett. 2015, 367, 18–25.
|
[8] |
Son, J.; Lyssiotis, C.A.; Ying, H.Q.; Wang, X.X.; Hua, S.J.; Ligorio, M.; Perera, R.M.; Ferrone, C.R.; Mullarky, E.; Shyh-Chang, N.; Kang, Y.A.; Fleming, J.B.; Bardeesy, N.; Asara, J.M.; Haigis, M.C.; DePinho, R.A.; Cantley, L.C.; Kimmelman, A.C. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 2013, 496, 101–105.
|
[9] |
Patra, K.C.; Hay, N. The pentose phosphate pathway and cancer. Trends Biochem. Sci. 2014, 39, 347–354.
|
[10] |
Yun, J.; Mullarky, E.; Lu, C.; Bosch, K.N.; Kavalier, A.; Rivera, K.; Roper, J.; Chio, I.I.C.; Giannopoulou, E.G.; Rago, C.; Muley, A.; Asara, J.M.; Paik, J.; Elemento, O.; Chen, Z.; Pappin, D.J.; Dow, L.E.; Papadopoulos, N.; Gross, S.S.; Cantley, L.C. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science. 2015, 350, 1391–1396.
|
[11] |
Nathan, C.; Cunningham-Bussel, A. Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat. Rev. Immunol. 2013, 13, 349–361.
|
[12] |
Yang, Y.; Karakhanova, S.; Werner, J.; Bazhin, A. Reactive oxygen species in cancer biology and anticancer therapy. Curr. Med. Chem. 2013, 20, 3677–3692.
|
[13] |
Klaunig, J.E.; Wang, Z.M.; Pu, X.Z.; Zhou, S.Y. Oxidative stress and oxidative damage in chemical carcinogenesis. Toxicol. Appl. Pharmacol. 2011, 254, 86–99.
|
[14] |
Bazhin, A.V.; Philippov, P.P.; Karakhanova, S. Reactive oxygen species in cancer biology and anticancer therapy. Oxidat. Med. Cell Longev. 2016, 2016, 1–2.
|
[15] |
Ziech, D.; Franco, R.; Pappa, A.; Panayiotidis, M.I. Reactive Oxygen Species (ROS)––Induced genetic and epigenetic alterations in human carcinogenesis. Mutat. Res. 2011, 711, 167–173.
|
[16] |
Campbell, K.J.; Tait, S.W.G. Targeting BCL-2 regulated apoptosis in cancer. Open Biol. 2018, 8, 180002.
|
[17] |
Lee, H.H.; Park, C.; Jeong, J.W.; Kim, M.J.; Seo, M.J.; Kang, B.W.; Park, J.U.; Kim, G.Y.; Choi, B.T.; Choi, Y.H.; Jeong, Y.K. Apoptosis induction of human prostate carcinoma cells by cordycepin through reactive oxygen species-mediated mitochondrial death pathway. Int. J. Oncol. 2013, 42, 1036–1044.
|
[18] |
Ozben, T. Oxidative stress and apoptosis: Impact on cancer therapy. J. Pharm. Sci. 2007, 96, 2181–2196.
|
[19] |
Nottingham, E.; Sekar, V.; Mondal, A.; Safe, S.; Rishi, A.K.; Singh, M. The role of self-nanoemulsifying drug delivery systems of CDODA-me in sensitizing erlotinib-resistant non-small cell lung cancer. J. Pharm. Sci. 2020, 109, 1867–1882.
|
[20] |
Yang, C.; Peng, S.; Sun, Y.M.; Miao, H.T.; Lyu, M.; Ma, S.J.; Luo, Y.; Xiong, R.; Xie, C.H.; Quan, H. Development of a hypoxic nanocomposite containing high-Z element as 5-fluorouracil carrier activated self-amplified chemoradiotherapy co-enhancement. Royal Soc. Open Sci. 2019, 6, 181790.
|
[21] |
D’Arcy, M.S. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int. 2019, 43, 582–592.
|
[22] |
Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. et Biophys. Acta BBA-Mol. Cell Res. 2016, 1863, 2977–2992.
|
[23] |
Bhutia, S.K.; Behera, B.; Nandini Das, D.; Mukhopadhyay, S.; Sinha, N.; Panda, P.K.; Naik, P.P.; Patra, S.K.; Mandal, M.; Sarkar, S.; Menezes, M.E.; Talukdar, S.; Maiti, T.K.; Das, S.K.; Sarkar, D.; Fisher, P.B. Abrus agglutinin is a potent anti-proliferative and anti-angiogenic agent in human breast cancer. Int. J. Cancer. 2016, 139, 457–466.
|
[24] |
Chen, Y.; Azad, M.B.; Gibson, S.B. Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ. 2009, 16, 1040–1052.
|
[25] |
Zhao, D.X.; Wang, C.C.; Tang, S.S.; Zhang, C.M.; Zhang, S.; Zhou, Y.; Xiao, X.L. Reactive oxygen species-dependent JNK downregulated olaquindox-induced autophagy in HepG2 cells. J. Appl. Toxicol. 2015, 35, 709–716.
|
[26] |
Villar, V.H.; Merhi, F.; Djavaheri-Mergny, M.; Durán, R.V. Glutaminolysis and autophagy in cancer. Autophagy. 2015, 11, 1198–1208.
|
[27] |
Thorburn, A.; Thamm, D.H.; Gustafson, D.L. Autophagy and cancer therapy. Mol. Pharmacol. 2014, 85, 830–838.
|
[28] |
Li, L.L.; Tan, J.; Miao, Y.Y.; Lei, P.; Zhang, Q. ROS and autophagy: interactions and molecular regulatory mechanisms. Cell Mol. Neurobiol. 2015, 35, 615–621.
|
[29] |
Nogueira, V.; Hay, N. Molecular pathways: reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clin. Cancer Res. 2013, 19, 4309–4314.
|
[30] |
Guo, F.; Yang, F.; Zhu, Y.H. Scutellarein from Scutellaria barbata induces apoptosis of human colon cancer HCT116 cells through the ROS-mediated mitochondria-dependent pathway. Nat. Prod. Res. 2019, 33, 2372–2375.
|
[31] |
Ye, F.F.; Wang, H.H.; Zhang, L.S.; Zou, Y.Y.; Han, H.L.; Huang, J. Baicalein induces human osteosarcoma cell line MG-63 apoptosis via ROS-induced BNIP3 expression. Tumour Biol. 2015, 36, 4731–4740.
|
[32] |
Chang, Z.Q.; Xing, J.C.; Yu, X.C. Curcumin induces osteosarcoma MG63 cells apoptosis via ROS/Cyto-C/Caspase-3 pathway. Tumour Biol. 2014, 35, 753–758.
|
[33] |
Wu, D.D.; Zhang, J.X.; Wang, J.; Li, J.; Liao, F.; Dong, W.G. Hesperetin induces apoptosis of esophageal cancer cells via mitochondrial pathway mediated by the increased intracellular reactive oxygen species. Tumour Biol. 2016, 37, 3451–3459.
|
[34] |
Wang, C.Y.; Lin, C.S.; Hua, C.H.; Jou, Y.J.; Liao, C.R.; Chang, Y.S.; Wan, L.; Huang, S.H.; Hour, M.J.; Lin, C.W. Cis-3-O-p-hydroxycinnamoyl ursolic acid induced ROS-dependent p53-mediated mitochondrial apoptosis in oral cancer cells. Biomol. Ther. 2019, 27, 54–62.
|
[35] |
Peng, K.T.; Chiang, Y.C.; Ko, H.H.; Chi, P.L.; Tsai, C.L.; Ko, M.I.; Lee, M.H.; Hsu, L.F.; Lee, C.W. Mechanism of lakoochin A inducing apoptosis of A375.S2 melanoma cells through mitochondrial ROS and MAPKs pathway. Int. J. Mol. Sci. 2018, 19, 2649.
|
[36] |
Wang, S.H.; Hu, Y.L.; Yan, Y.; Cheng, Z.K.; Liu, T.X. Sotetsuflavone inhibits proliferation and induces apoptosis of A549 cells through ROS-mediated mitochondrial-dependent pathway. BMC Complement. Altern. Med. 2018, 18, 235.
|
[37] |
Tan, B.L.; Norhaizan, M.E.; Chan, L.C. ROS-mediated mitochondrial pathway is required for manilkara zapota (L.) P. royen leaf methanol extract inducing apoptosis in the modulation of caspase activation and EGFR/NF-κB activities of HeLa human cervical cancer cells. Evid. Based Complement. Alternat. Med. 2018, 2018, 1–19.
|
[38] |
Yang, S.P.; Zhang, Y.G.; Luo, Y.; Xu, B.C.; Yao, Y.Q.; Deng, Y.L.; Yang, F.F.; Ye, T.H.; Wang, G.; Cheng, Z.Q.; Zheng, Y.; Xie, Y.M. Hinokiflavone induces apoptosis in melanoma cells through the ROS-mitochondrial apoptotic pathway and impairs cell migration and invasion. Biomed. Pharmacother. 2018, 103, 101–110.
|
[39] |
Aghvami, M.; Ebrahimi, F.; Zarei, M.H.; Salimi, A.; Pourahmad Jaktaji, R.; Pourahmad, J. Matrine induction of ROS mediated apoptosis in human ALL B-lymphocytes via mitochondrial targeting. Asian Pac. J. Cancer Prev. 2018, 19, 555–560.
|
[40] |
Oh, J.M.; Kim, E.; Chun, S. Ginsenoside compound K induces ros-mediated apoptosis and autophagic inhibition in human neuroblastoma cells in vitro and in vivo. Int. J. Mol. Sci. 2019, 20, 4279.
|
[41] |
Yang, H.L.; Lin, R.W.; Rajendran, P.; Mathew, D.C.; Thigarajan, V.; Lee, C.C.; Hsu, C.J.; Hseu, Y.C. Antrodia salmonea-induced oxidative stress abrogates HER-2 signaling cascade and enhanced apoptosis in ovarian carcinoma cells. J. Cell Physiol. 2019, 234, 3029–3042.
|
[42] |
Lu, Z.Y.; Zhang, G.X.; Zhang, Y.F.; Hua, P.Y.; Fang, M.D.; Wu, M.L.; Liu, T.J. Isoalantolactone induces apoptosis through reactive oxygen species-dependent upregulation of death receptor 5 in human esophageal cancer cells. Toxicol. Appl. Pharmacol. 2018, 352, 46–58.
|
[43] |
Oh, H.; Yoon, G.; Shin, J.C.; Park, S.M.; Cho, S.S.; Cho, J.H.; Lee, M.H.; Liu, K.D.; Cho, Y.S.; Chae, J.I.; Shim, J.H. Licochalcone B induces apoptosis of human oral squamous cell carcinoma through the extrinsic- and intrinsic-signaling pathways. Int. J. Oncol. 2016, 48, 1749–1757.
|
[44] |
Kwak, A.W.; Choi, J.S.; Lee, M.H.; Oh, H.N.; Cho, S.S.; Yoon, G.; Liu, K.D.; Chae, J.I.; Shim, J.H. Retrochalcone echinatin triggers apoptosis of esophageal squamous cell carcinoma via ROS- and ER stress-mediated signaling pathways. Molecules. 2019, 24, 4055.
|
[45] |
Liu, Z.R.; Sun, L.Z.; Jia, T.H.; Jia, D.F. beta-Aescin shows potent antiproliferative activity in osteosarcoma cells by inducing autophagy, ROS generation and mitochondrial membrane potential loss. J. BUON. 2017, 22, 1582–1586.
|
[46] |
Thiyagarajan, V.; Sivalingam, K.S.; Viswanadha, V.P.; Weng, C.F. 16-hydroxy-cleroda-3, 13-Dien-16, 15-olide induced glioma cell autophagy via ROS generation and activation of p38 MAPK and ERK-1/2. Environ. Toxicol. Pharmacol. 2016, 45, 202–211.
|
[47] |
Wang, H.; Zhang, T.; Sun, W.; Wang, Z.; Zuo, D.; Zhou, Z.; Li, S.; Xu, J.; Yin, F.; Hua, Y.; Cai, Z. Erianin induces G2/M-phase arrest, apoptosis, and autophagy via the ROS/JNK signaling pathway in human osteosarcoma cells in vitro and in vivo. Cell Death Dis. 2016, 7, e2247.
|
[48] |
Zhou, S.F.; Pan, S.T.; Qin, Y.R.; Zhou, Z.W.; He, Z.X.; Zhang, X.J.; Yang, T.X.; Yang, Y.X.; Wang, D.; Qiu, J.X. Plumbagin induces G2/M arrest, apoptosis, and autophagy via p38 MAPK- and PI3K/Akt/mTOR-mediated pathways in human tongue squamous cell carcinoma cells. Drug Des. Dev. Ther. 2015, 1601–1626.
|
[49] |
Ma, K.; Zhang, C.; Huang, M.Y.; Li, W.Y.; Hu, G.Q. Cinobufagin induces autophagy-mediated cell death in human osteosarcoma U2OS cells through the ROS/JNK/p38 signaling pathway. Oncol. Rep. 2016, 36, 90–98.
|
[50] |
Guo, Z.G.; Hu, G.Z.; Wang, H.; Li, Z.H.; Liu, N.J. Ampelopsin inhibits human glioma through inducing apoptosis and autophagy dependent on ROS generation and JNK pathway. Biomed. Pharmacother. 2019, 116, 108524.
|
[51] |
Nicco, C.; Batteux, F. ROS modulator molecules with therapeutic potential in cancers treatments. Molecules. 2017, 23, 84.
|
[52] |
Dasari, S.; Bernard Tchounwou, P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014, 740, 364–378.
|
[53] |
Chuang, C.Y.; Liu, H.C.; Wu, L.C.; Chen, C.Y.; Chang, J.T.; Hsu, S.L. Gallic acid induces apoptosis of lung fibroblasts via a reactive oxygen species-dependent ataxia telangiectasia mutated-p53 activation pathway. J. Agric. Food Chem. 2010, 58, 2943–2951.
|
[54] |
Russell, L.H.; Mazzio, E.; Badisa, R.B.; Zhu, Z.P.; Agharahimi, M.; Oriaku, E.T.; Goodman, C.B. Autoxidation of Gallic acid induces ROS-dependent death in human prostate cancer LNCaP cells. Anticancer. Res. 2012, 32, 1595–1602.
|
[55] |
Wang, R.X.; Ma, L.J.; Weng, D.; Yao, J.H.; Liu, X.Y.; Jin, F.G. Gallic acid induces apoptosis and enhances the anticancer effects of cisplatin in human small cell lung cancer H446 cell line via the ROS-dependent mitochondrial apoptotic pathway. Oncol. Rep. 2016, 35, 3075–3083.
|
[56] |
Yan, C.Q.; Kong, D.C.; Ge, D.; Zhang, Y.M.; Zhang, X.S.; Su, C.H.; Cao, X.J. Mitomycin C induces apoptosis in rheumatoid arthritis fibroblast-like synoviocytes via a mitochondrial-mediated pathway. Cell Physiol. Biochem. 2015, 35, 1125–1136.
|
[57] |
Poornima, P.; Quency, R.S.; Padma, V.V. Neferine induces reactive oxygen species mediated intrinsic pathway of apoptosis in HepG2 cells. Food Chem. 2013, 136, 659–667.
|
[58] |
Eid, W.; Abdel-Rehim, W. Neferine enhances the antitumor effect of mitomycin-C in hela cells through the activation of p38-MAPK pathway. J. Cell Biochem. 2017, 118, 3472–3479.
|
[59] |
Prasad, S.; Gupta, S.C.; Tyagi, A.K. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett. 2017, 387, 95–105.
|
[60] |
Fischer, N.; Seo, E.J.; Efferth, T. Prevention from radiation damage by natural products. Phytomedicine. 2018, 47, 192–200.
|
[61] |
Ichihashi, M.; Ahmed, N.U.; Budiyanto, A.; Wu, A.; Bito, T.; Ueda, M.; Osawa, T. Preventive effect of antioxidant on ultraviolet-induced skin cancer in mice. J. Dermatol. Sci. 2000, 23, S45–S50.
|
[62] |
Kallassy, H.; Fayyad-Kazan, M.; Makki, R.; El-Makhour, Y.; Hamade, E.; Rammal, H.; Leger, D.Y.; Sol, V.; Fayyad-Kazan, H.; Liagre, B.; Badran, B. Chemical composition, antioxidant, anti-inflammatory, and antiproliferative activities of the plant Lebanese crataegus azarolus L. Med. Sci. Monit. Basic Res. 2017, 23, 270–284.
|
[63] |
El Abed, H.; Chakroun, M.; Abdelkafi-Koubaa, Z.; Drira, N.; Marrakchi, N.; Mejdoub, H.; Khemakhem, B. Antioxidant, anti-inflammatory, and antitumoral effects of aqueous ethanolic extract from Phoenix dactylifera L. parthenocarpic dates. Biomed Res. Int. 2018, 2018, 1542602.
|
[64] |
Al-Awaida, W.; Al-Hourani, B.; Akash, M.; Talib, W.; Zein, S.; Falah, R. In vitro anticancer, anti-inflammatory, and antioxidant potentials of Ephedra aphylla. J. Cancer Res. Ther. 2018, 14, 1350–1354.
|
[65] |
Mun, G.I.; Kim, S.; Choi, E.; Kim, C.S.; Lee, Y.S. Pharmacology of natural radioprotectors. Arch. Pharm. Res. 2018, 41, 1033–1050.
|
[66] |
Zhu, W.Z.; Ma, L.; Yang, B.W.; Zheng, Z.D.; Chai, R.F.; Liu, T.T.; Liu, Z.J.; Song, T.Y.; Li, F.L.; Li, G.R. Flavone inhibits migration through DLC1/RhoA pathway by decreasing ROS generation in breast cancer cells. Vitro Cell Dev. Biol. Animal. 2016, 52, 589–597.
|
[67] |
Qiu, J.X.; Zhang, T.; Zhu, X.Y.; Yang, C.; Wang, Y.X.; Zhou, N.; Ju, B.X.; Zhou, T.H.; Deng, G.Z.; Qiu, C.W. Hyperoside induces breast cancer cells apoptosis via ROS-mediated NF-κB signaling pathway. Int. J. Mol. Sci. 2019, 21, 131.
|
[1] | Kaixiang Deng, Jingzhou Peng, Meiquan Zhang, Huijuan Lin, Xiaohua Wang, Daoxing He, Junming Zhu, Mingguang Chen, Jin Huang. Oyster peptide ameliorates hepatic fibrosis through the NF-κB/iNOS signaling pathway [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(6): 435-445. |
[2] | Mengya Wang, Kuanyou Zhang, Xin Chen, Hao Fu, Shouchun Peng. Study on the mechanism of Rhinoceros Horn and Rehmannia Decoction in the treatment of systemic lupus erythematosus based on the method of network pharmacology [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(5): 351-359. |
[3] | Min Wan, Jinyu Liu, Guangyi Yu, Suiju Tong, Lei Ke, Yu Zhang, Ruxu You. Availability and affordability of osteoporosis treatment drugs in Wuhan based on the WHO/HAI standard survey method [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(5): 417-425. |
[4] | Changping Lin, Sanyue Wang, Yunguo Xue, Youliu Yu. The effects of midazolam combined with dezocine on laparoscopic appendectomy [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(3): 207-213. |
[5] | Jianzhao Niu, Dongsheng Yang, Yufei Feng, Baihao Sun, Haoyue Guan, Lingyun Ma. The introduction of nitrosamine impurities in medicinal products [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(3): 223-230. |
[6] | Peijie Chen, Yuntian Zhang. PTP1B restrains the apoptosis of activated hepatic stellate cells (HSCs) induced by TRAIL during the resolution of liver fibrosis [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 867-880. |
[7] | Yuqian Zhang, Haiying Niu, Yiran Jin. Network pharmacology-based strategy to investigate anticancer mechanisms of Catharanthus roseus (L.) G. Don [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 911-922. |
[8] | Dongsheng Wei, Xiaosheng Liu, Luzhen Li, Jiajie Qi, Yuxuan Wang, Zhe Zhang. Unraveling the biological and immunological mechanisms of safflower-danshen in the treatment of coronary atherosclerotic heart disease: a comprehensive bioinformatics and single-cell sequencing approach [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(10): 796-812. |
[9] | Jin Huang, Kaixiang Deng, Meizhen Huang, Gaomin Lin, Mei Lin, Shuimei Lian, Meiquan Zhang. The pharmacological mechanism underlying the apoptosis of human hepatic stellate cells LX-2 induced by NF-κB inhibitor PDTC [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(9): 665-676. |
[10] | Mingkang Zhang, Yuyue Chen, Yan Zhou, Xin'an Wu. The alleviating effect of quercetin on carbon tetrachloride-induced liver fibrosis in rats and its underlying mechanism [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(11): 840-852. |
[11] | Yuehua Liu, Zhangqin Xue, Jianming Wei, Ruomeng Wei, Baodong Yin, Aiqin Liu. Study on drug synthesis and activity of sodium olpadronate [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(11): 883-892. |
[12] | Yanfang Yang, Yinan Zhang, Youbo Zhang, Xiuwei Yang. Simultaneous quantification of evodiamine, rutaecarpine, and dehydroevodiamine in rat cerebrospinal fluid and cerebral nuclei after oral administration by UPLC-MS/MS [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(1): 13-22. |
[13] | Aris Stiawan, Eti Nurwening Sholikhah, Yehezkiel Steven Kurniawan, Yoga Priastomo, Jumina. Synthesis, cytotoxicity assay, and molecular docking study of hydroxychalcone derivatives as potential tyrosinase inhibitors [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(8): 634-644. |
[14] | Xulong Chen, Zhengge Liao, Cheng Li, Guoyong Huang, Yunyan Song, Wei Dong, Abid Naeem, Xinli Liang. In vitro metabolism and inhibitory effects of atractylenolide II on various hepatic CYPs in HLMs [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(8): 645-656. |
[15] | Rui Li, Yanru Kong. Effects of linagliptin on inflammatory factors and arteriosclerosis in patients with newly diagnosed type 2 diabetes mellitus [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(8): 692-698. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||