Journal of Chinese Pharmaceutical Sciences ›› 2021, Vol. 30 ›› Issue (6): 468-483.DOI: 10.5246/jcps.2021.06.036
• Original articles • Previous Articles Next Articles
Yinglin Yang1,2, Shanshan Zhang1,2, Man Liu1,2, Yuehua Wang1,2,*(), Guanhua Du1,2,*()
Received:
2020-11-28
Revised:
2021-02-13
Accepted:
2021-03-15
Online:
2021-06-29
Published:
2021-06-29
Contact:
Yuehua Wang, Guanhua Du
Supporting:
Yinglin Yang, Shanshan Zhang, Man Liu, Yuehua Wang, Guanhua Du. Xiao-Xu-Ming decoction extract ameliorates brain injury in rats with thrombotic focal ischemic stroke and understanding possible therapeutic targets using proteomics[J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(6): 468-483.
[1] |
Bernheisel, C.R.; Schlaudecker, J.D.; Leopold, K. Subacute management of ischemic stroke. Am. Fam. Physician. 2011, 84, 1383–1388.
|
[2] |
Barthels, D.; Das, H. Current advances in ischemic stroke research and therapies. Biochim Biophys. Acta Mol. Basis. Dis. 2020, 1866, 165260.
|
[3] |
Cai, Z.; Qiao, P.F.; Wan, C.Q.; Cai, M.; Zhou, N.K.; Li, Q. Role of blood-brain barrier in Alzheimer’s disease. J. Alzheimers. Dis. 2018, 63, 1223–1234.
|
[4] |
Keaney, J.; Campbell, M. The dynamic blood-brain barrier. FEBS J. 2015, 282, 4067–4079.
|
[5] |
Li, W.H.; Cheng, X.; Yang, Y.L.; Liu, M.; Zhang, S.S.; Wang, Y.H.; Du, G.H. Kaempferol attenuates neuroinflammation and blood brain barrier dysfunction to improve neurological deficits in cerebral ischemia/reperfusion rats. Brain Res. 2019, 1722, 146361.
|
[6] |
Tsai, T.H.; Song, E.; Zhu, R.; Di Poto, C.; Wang, M.; Luo, Y.; Varghese, R.S.; Tadesse, M.G.; Ziada, D.H.; Desai, C.S.; Shetty, K.; Mechref, Y.; Ressom, H.W. LC-MS/MS-based serum proteomics for identification of candidate biomarkers for hepatocellular carcinoma. Proteomics. 2015, 15, 2369–2381.
|
[7] |
Wang, Y.H.; Yang, Y.L.; Cheng, X.; Zhang, J.; Li, W.; Du, G.H. Xiao-Xu-Ming decoction extract regulates differentially expressed proteins in the hippocampus after chronic cerebral hypoperfusion. Neural. Regen. Res. 2019, 14, 470–479.
|
[8] |
Jia, Z.; Tie, C.; Wang, C.; Wu, C.; Zhang, J. Perturbed lipidomic profiles in rats with chronic cerebral ischemia are regulated by Xiao-xu-Ming decoction. Front. Pharmacol. 2019, 10, 264.
|
[9] |
Cheng, X.; Yang, H.; Yang, Y.L.; Li, W.H.; Liu, M.; Wang, Y.H.; Du, G.H. Xiao-Xu-Ming decoction extract alleviates LPS-induced neuroinflammation associated with down-regulating TLR4/MyD88 signaling pathway in vitro and in vivo. J. Chin. Pharm. Sci. 2019, 28, 88–99.
|
[10] |
Wang, Y.H.; He, X.L.; Yang, H.G.; Qin, H.L.; Du, G.H. Effects of the effective components group of Xiao-xu-ming Decoction on MCAO rats. Chin. Pharm. J. 2012, 47, 194–198.
|
[11] |
Lan, R.; Xiang, J.; Wang, G.H.; Li, W.W.; Zhang, W.; Xu, L.L.; Cai, D.F. Xiao-xu-Ming decoction protects against blood-brain barrier disruption and neurological injury induced by cerebral ischemia and reperfusion in rats. Evid Based Complement. Alternat. Med. 2013, 2013, 629782.
|
[12] |
Lan, R.; Zhang, Y.; Xiang, J.; Zhang, W.; Wang, G.H.; Li, W.W.; Xu, L.L.; Cai, D.F. Xiao-Xu-Ming decoction preserves mitochondrial integrity and reduces apoptosis after focal cerebral ischemia and reperfusion via the mitochondrial p53 pathway. J. Ethnopharmacol. 2014, 151, 307–316.
|
[13] |
Zhang, R.; Liu, C.; Ji, Y.Q.; Teng, L.; Guo, Y.L. Neuregulin-1β plays a neuroprotective role by inhibiting the Cdk5 signaling pathway after cerebral ischemia-reperfusion injury in rats. J. Mol. Neurosci. 2018, 66, 261–272.
|
[14] |
Liu, P.; Tang, Y.Y.; Yang, X.S.; Dai, J.; Yang, M.; Zhang, H.; Liu, Y.; Yan, H.; Song, X.Y. Validation of a preclinical animal model to assess brain recovery after acute stroke. Eur. J. Pharmacol. 2018, 835, 75–81.
|
[15] |
Cheng, X.; Yang, Y.L.; Li, W.H.; Liu, M.; Wang, Y.H.; Du, G.H. Cerebral ischemia-reperfusion aggravated cerebral infarction injury and possible differential genes identified by RNA-Seq in rats. Brain Res. Bull. 2020, 156, 33–42.
|
[16] |
Cheng, X.; Yang, Y.L.; Li, W.H.; Liu, M.; Zhang, S.S.; Wang, Y.H.; Du, G.H. Dynamic alterations of brain injury, functional recovery, and metabolites profile after cerebral ischemia/reperfusion in rats contributes to potential biomarkers. J. Mol. Neurosci. 2020, 70, 667–676.
|
[17] |
Bárez-López, S.; Bosch-García, D.; Gómez-Andrés, D.; Pulido-Valdeolivas, I.; Montero-Pedrazuela, A.; Obregon, M.J.; Guadaño-Ferraz, A. Abnormal motor phenotype at adult stages in mice lacking type 2 deiodinase. PLoS One. 2014, 9, e103857.
|
[18] |
Wu, G.; McBride, D.W.; Zhang, J.H. Axl activation attenuates neuroinflammation by inhibiting the TLR/TRAF/NF-κB pathway after MCAO in rats. Neurobiol. Dis. 2018, 110, 59–67.
|
[19] |
Sommer, C.J. Ischemic stroke: experimental models and reality. Acta Neuropathol. 2017, 133, 245–261.
|
[20] |
Li, W.H.; Yang, Y.L.; Cheng, X.; Liu, M.; Zhang, S.S.; Wang, Y.H.; Du, G.H. Baicalein attenuates caspase-independent cells death via inhibiting PARP-1 activation and AIF nuclear translocation in cerebral ischemia/reperfusion rats. Apoptosis. 2020, 25, 354–369.
|
[21] |
Grysiewicz, R.A.; Thomas, K.; Pandey, D.K. Epidemiology of ischemic and hemorrhagic stroke: incidence, prevalence, mortality, and risk factors. Neurol. Clin. 2008, 26, 871–95, vii.
|
[22] |
Campbell, B.C. Thrombolysis and thrombectomy for acute ischemic stroke: strengths and synergies. Semin. Thromb. Hemost. 2017, 43, 185–190.
|
[23] |
McBride, D.W.; Zhang, J.H. Precision stroke animal models: the permanent MCAO model should be the primary model, not transient MCAO. Transl. Stroke Res. 2017, 8, 397–404.
|
[24] |
Abdullahi, W.; Tripathi, D.; Ronaldson, P.T. Blood-brain barrier dysfunction in ischemic stroke: targeting tight junctions and transporters for vascular protection. Am. J. Physiol. Cell Physiol. 2018, 315, C343–C356.
|
[25] |
Sladojevic, N.; Stamatovic, S.M.; Johnson, A.M.; Choi, J.; Hu, A.N.; Dithmer, S.; Blasig, I.E.; Keep, R.F.; Andjelkovic, A.V. Claudin-1-dependent destabilization of the blood-brain barrier in chronic stroke. J. Neurosci. 2019, 39, 743–757.
|
[26] |
Jiao, H.X.; Wang, Z.H.; Liu, Y.H.; Wang, P.; Xue, Y.X. Specific role of tight junction proteins claudin-5, occludin, and ZO-1 of the blood-brain barrier in a focal cerebral ischemic insult. J. Mol. Neurosci. 2011, 44, 130–139.
|
[27] |
Walther, T.C.; Mann, M. Mass spectrometry-based proteomics in cell biology. J. Cell Biol. 2010, 190, 491–500.
|
[28] |
Satyam, A.; Graef, E.R.; Lapchak, P.H.; Tsokos, M.G.; Dalle Lucca, J.J.; Tsokos, G.C. Complement and coagulation cascades in trauma. Acute. Med. Surg. 2019, 6, 329–335.
|
[29] |
Comte, I.; Kim, Y.; Young, C.C.; van der Harg, J.M.; Hockberger, P.; Bolam, P.J.; Poirier, F.; Szele, F.G. Galectin-3 maintains cell motility from the subventricular zone to the olfactory bulb. J. Cell Sci. 2011, 124, 2438–2447.
|
[30] |
James, R.E.; Hillis, J.; Adorján, I.; Gration, B.; Mundim, M.V.; Iqbal, A.J.; Majumdar, M.M.; Yates, R.L.; Richards, M.M.; Goings, G.E.; DeLuca, G.C.; Greaves, D.R.; Miller, S.D.; Szele, F.G. Loss of galectin-3 decreases the number of immune cells in the subventricular zone and restores proliferation in a viral model of multiple sclerosis. Glia. 2016, 64, 105–121.
|
[31] |
Lalancette-Hébert, M.; Swarup, V.; Beaulieu, J.M.; Bohacek, I.; Abdelhamid, E.; Weng, Y.C.; Sato, S.; Kriz, J. Galectin-3 is required for resident microglia activation and proliferation in response to ischemic injury. J. Neurosci. 2012, 32, 10383–10395.
|
[32] |
Sirko, S.; Irmler, M.; Gascón, S.; Bek, S.; Schneider, S.; Dimou, L.; Obermann, J.; De Souza Paiva, D.; Poirier, F.; Beckers, J.; Hauck, S.M.; Barde, Y.A.; Götz, M. Astrocyte reactivity after brain injury-: The role of galectins 1 and 3. Glia. 2015, 63, 2340–2361.
|
[33] |
Young, C.C.; Al-Dalahmah, O.; Lewis, N.J.; Brooks, K.J.; Jenkins, M.M.; Poirier, F.; Buchan, A.M.; Szele, F.G. Blocked angiogenesis in Galectin-3 null mice does not alter cellular and behavioral recovery after middle cerebral artery occlusion stroke. Neurobiol. Dis. 2014, 63, 155–164.
|
[34] |
Lerman, B.J.; Hoffman, E.P.; Sutherland, M.L.; Bouri, K.; Hsu, D.K.; Liu, F.T.; Rothstein, J.D.; Knoblach, S.M. Deletion of galectin-3 exacerbates microglial activation and accelerates disease progression and demise in a SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Brain Behav. 2012, 2, 563–575.
|
[35] |
Jiang, H.R.; Al Rasebi, Z.; Mensah-Brown, E.; Shahin, A.; Xu, D.M.; Goodyear, C.S.; Fukada, S.Y.; Liu, F.T.; Liew, F.Y.; Lukic, M.L. Galectin-3 deficiency reduces the severity of experimental autoimmune encephalomyelitis. J. Immunol. 2009, 182, 1167–1173.
|
[1] | Wenjing Ta, Ruochen Hua, Xingyue Li, Jihong Song, Wen Lu. In vitro blood-brain barrier models from different species: an overview on permeability associated with drug delivery [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(4): 237-249. |
[2] | Xin Li, Yan Shang, Mengxin Qi, Guoheng Hu. Proteomic study of Rehmannia glutinosa and Cornus officinalis herbal pair on the brain tissue of rats with ischemic stroke [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(1): 32-44. |
[3] | Yinglin Yang, Shanshan Zhang, Man Liu, Dongni Liu, Yuehua Wang, Guanhua Du. Network pharmacological analysis of Xiao-Xu-Ming decoction against ischemic stroke and verification of its mechanism of anti-inflammation and neurovascular protection in vivo [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(5): 343-359. |
[4] | Jian Zhang, Mengmeng Qin, Dan Yang, Wenbing Dai, Hua Zhang, Xueqing Wang, Bing He, Qiang Zhang. Proteomic analysis on cellular response induced by nanoparticles reveals the nano-trafficking pathway through epithelium [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(2): 107-118. |
[5] | Yujing Song, Xuyang Zhao, Qian Chen, Yan Song, Wanyu Lei, Yuxin Yin, Weining Ma, Zhuo Huang. Application of proteomic approaches to assess the effect of anti-epileptic drug on seizure foci [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(1): 13-28. |
[6] | Siyu Zhao, Xiaoyan Liu, Yuanjun Zhu, Ye Liu, Yinye Wang. The proteomic study and the target discovery of W026B, a new compound with brain protective effect [J]. Journal of Chinese Pharmaceutical Sciences, 2019, 28(6): 381-392. |
[7] | Xiao Cheng, Huan Yang, Yinglin Yang, Weihan Li, Man Liu, Yuehua Wang, Guanhua Du. Xiao-Xu-Ming decoction extract alleviates LPS-induced neuroinflammation associated with down-regulating TLR4/MyD88 signaling pathway in vitro and in vivo [J]. Journal of Chinese Pharmaceutical Sciences, 2019, 28(2): 88-99. |
[8] | Yiran Zheng, Xiuwen Wu, Xiuwei Yang. The blood-brain barrier permeability of 20(S) and 20(R)-protopanaxatriol epimers and dammar-20(22)E,24-diene-3β,6α,12β-triol in MDCK-pHaMDR cell monolayer model [J]. Journal of Chinese Pharmaceutical Sciences, 2017, 26(8): 566-573. |
[9] | Renzong Zhu, Xianling Ning, Zhili Zhang, Xiaowei Wang, Chao Tian, Junyi Liu*. Design, synthesis and pharmacological evaluation of caffeic acid phenethyl ester acylation as multifunctional neuroprotective agents against oxidative stress injury [J]. Journal of Chinese Pharmaceutical Sciences, 2013, 22(6): 475-482. |
[10] | Chun-Yun Liu, Ling Feng, Jie-Zhong Yu, Min-Fang Guo, Yong-Sheng Sun, Ning Ji, Jian Meng, Li-Yun Liang, Cun-Gen Ma*. Glucosamine reduces blood-brain barrier disruption by inhibiting the expression of matrix metalloproteinase-9 in experimental autoimmune encephalomyelitis rats [J]. , 2011, 20(2): 188-194. |
[11] | ZHAO Kang-feng, WANG Qi, PU Xiao-ping*, YANG Xiu-wei, ZHU Yu-zhen. Preparation of BCEC-Astrocyte Co-culturing Membrane Plate Insert [J]. , 2004, 13(4): 276-281. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||