[1] Sun, G.Y.; Shelat, P.B.; Jensen, M.B.; He, Y.; Sun, A.Y.; Simonyi, A. Phospholipases A2 and inflammatory responses in the central nervous system. Neuromolecular Med. 2010, 12, 133-148.
[2] Zhang, Y.; Zheng, D.P.; Shui, M.Y.; Liu, Y.; Liu, X.Y., Wang, Y.Y. A new compound W026B alleviates ischemic brain injury through inhibiting the production of inflammatory cytokines in pMCAO and tMCAO, and enhances the beneficial effect of tPA. J. Chin. Pharm. Sci. 2018, 27, 675-685.
[3] Griffiths, M.; Neal, J.W.; Gasque, P. Innate immunity and protective neuroinflammation: new emphasis on the role of neuroimmune regulatory proteins. Int. Rev. Neurobiol. 2007, 82, 29-55.
[4] Kreutzberg, G.W. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 1996, 19, 312-318.
[5] Dheen, S.T.; Kaur, C.; Ling, E.A. Microglial activation and its implications in the brain diseases. Curr. Med. Chem. 2007, 14, 1189-1197.
[6] Yao, H.; Hu, C.S.; Yin, L.H.; Tao, X.F.; Xu, L.N.; Qi, Y.; Han, X.; Xu, Y.W.; Zhao, Y.Y.; Wang, C.Y.; Peng, J.Y. Dioscin reduces lipopolysaccharide-induced inflammatory liver injury via regulating TLR4/MyD88 signal pathway. Int. Immunopharmacol. 2016, 36, 132-141.
[7] Sun, M.Y.; Deng, B.; Zhao, X.Y.; Gao, C.J.; Yang, L.; Zhao, H.; Yu, D.H.; Zhang, F.; Xu, L.X.; Chen, L.; Sun, X.D. Isoflurane preconditioning provides neuroprotection against stroke by regulating the expression of the TLR4 signalling pathway to alleviate microglial activation. Sci. Rep. 2015, 5, 11445.
[8] Wang, S.; Wang, H.; Guo, H.; Kang, L.; Gao, X.; Hu, L. Neuroprotection of Scutellarin is mediated by inhibition of microglial inflammatory activation. Neuroscience. 2011, 185, 150-160.
[9] Kim, S.K.; Kim, H.J.; Choi, S.E.; Park, K.H.; Choi, H.K.; Lee, M.W. Anti-oxidative and inhibitory activities on nitric oxide (NO) and prostaglandin E2 (COX-2) production of flavonoids from seeds of Prunus tomentosa Thunberg. Arch. Pharm. Res. 2008, 31, 424-428.
[10] Zhou, H.; Lapointe, B.M.; Clark, S.R.; Zbytnuik, L.; Kubes, P. A requirement for microglial TLR4 in leukocyte recruitment into brain in response to lipopolysaccharide. J. Immunol. 2006, 177, 8103-8110.
[11] Lee, J.C.; Cho, G.S.; Kim, H.J.; Lim, J.H.; Oh, Y.K.; Nam, W.; Chung, J.H.; Kim, W.K. Accelerated cerebral ischemic injury by activated macrophages/microglia after lipopolysaccharide microinjection into rat corpus callosum. Glia. 2005, 50, 168-181.
[12] Shih, R.H.; Wang, C.N.; Yang, C.M. NF-kappaB signaling pathways in neurological inflammation: A mini review. Front. Mol. Neurosci. 2015, 8, 77.
[13] Zhou, X.J.; Sun, X.B.; Gong, X.X.; Yang, Y.; Chen, C.B.; Shan, G.; Yao, Q.S. Astragaloside IV from Astragalus membranaceus ameliorates renal interstitial fibrosis by inhibiting inflammation via TLR4/NF-кB in vivo and in vitro. Int. Immunopharmacol. 2017, 42, 18-24.
[14] Walker, D.G.; Lue, L.F. Immune phenotypes of microglia in human neurodegenerative disease: challenges to detecting microglial polarization in human brains. Alzheimers Res. Ther. 2015, 7, 56.
[15] Patra, M.C.; Choi, S. Recent Progress in the molecular recognition and therapeutic importance of interleukin-1 receptor-associated kinase 4. Molecules. 2016, 21, e1529.
[16] Wang, Y.L.; Ding, C.G.; Du, K.H.; Xiao, Y.; Wu, C.S.; Zhang, J.L.; Qin, H.L.; Du, G.H. Identification of active compounds and their metabolites by high-performance liquid chromatography/electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry from Xiao-xu-ming decoction (XXMD). Rapid Commun. Mass Spectrom. 2009, 23, 2724-2732.
[17] Wang, Y.H.; Zhang, H.X.; Li, Q.; Ding, Y.; Hu, J.J.; Du, G.H. High-throughput screening assay for groups of effective components extracted from Xiaoxuming Recipe. Zhong Xi Yi Jie He Xue Bao. 2006, 4, 64-67.
[18] Wang, Y.H.; Qin, H.L.; He, X.L.; Du, G.H. Activity evaluation of components and preparation of effective components group of xiaoxuming decoction for anti-cerebral ischemic. Zhongguo Zhong Yao Za Zhi. 2011, 36, 2140-2144.
[19] Wang, Y.H.; He, X.L.; Li, X.X.; Qin, H.L.; Du, G.H. Effects of the effective component group of Chinese herbal medicine Xiaoxuming Decoction on brain mitochondria in rats with chronic cerebral ischemia. Zhong Xi Yi Jie He Xue Bao. 2012, 10, 569-576.
[20] Wang, Y.H.; He, X.L.; Yang, H.G.; Qin, H.L.; Du, G.H. Effects of the active components of Chinese herbal medicine Xiaoxuming Decoction on memory behavior and brain injury in rats with chronic cerebral ischemia. Zhong Xi Yi Jie He Xue Bao. 2012, 10, 91-99.
[21] Yang, H.; Cheng, X.; Yang, Y.L.; Wang, Y.H.; Du, G.H. Ramulus Cinnamomi extract attenuates neuroinflammatory responses via downregulating TLR4/MyD88 signaling pathway in BV2 cells. Neural. Regen. Res. 2017, 12, 1860-1864.
[22] Bussi, C.; Peralta, Ramos, J.M.; Arroyo, D.S.; Gaviglio, E.A.; Gallea, J.I.; Wang, J.M.; Celej, M.S.; Iribarren, P. Autophagy down regulates pro-inflammatory mediators in BV2 microglial cells and rescues both LPS and alpha-synuclein induced neuronal cell death. Sci. Rep. 2017, 7, 43153.
[23] Yang, H.; Cheng, X.; Yang, Y.L.; Wang, Y.H.; Du, G.H. Ramulus Cinnamomi extract attenuates neuroinflammatory responses via downregulating TLR4/MyD88 signaling pathway in BV2 cells. Neural. Regen. Res. 2017, 12, 1860-1864.
[24] Cheng, X.; Yang, Y.L.; Yang, H.; Wang, Y.H.; Du, G.H. Kaempferol alleviates LPS-induced neuroinflammation and BBB dysfunction in mice via inhibiting HMGB1 release and down-regulating TLR4/MyD88 pathway. Int. Immunopharmacol. 2018, 56, 29-35.
[25] Wang, C.H.; Wu, C.S.; Qin, H.L.; Zhang, J.L. Rapid discovery and identification of 68 compounds in the active fraction from Xiao-Xu-Ming decoction (XXMD) by HPLC-HRMS and MTSF technique. Chin. Chem. Lett. 2014, 25, 1648-1652.
[26] Du, K.H.; Wu, C.S.; Ding, C.G.; Zhao, S.L.; Qin, H.L.; Zhang, J.L. Simultaneous LC-MS analysis and of wogonin and oroxylin A in rat plasma, and pharmacokinetic studies after administration of the active fraction from Xiao-Xu-Ming decoction. Chromatographia. 2009, 69, 1259-1266.
[27] Wang, C.H.; Jia, Z.X.; Wang, Z.; Hu, T.; Qin, H.L.; Du, G.H.; Wu, C.S.; Zhang, J.L. Pharmacokinetics of 21 active components in focal cerebral ischemic rats after oral administration of the active fraction of Xiao-Xu-Ming decoction. J. Pharm. Biomed. Anal. 2016, 122, 110-117.
[28] Lan, R.; Xiang, J.; Wang, G.H.; Li, W.W.; Zhang, W.; Xu, L.L.; Cai, D.F. Xiao-Xu-Ming Decoction Protects against Blood-Brain Barrier Disruption and Neurological Injury Induced by Cerebral Ischemia and Reperfusion in Rats. Evid. Based Complement. Alternat. Med. 2013, 2013, 629782.
[29] Lan, R.; Zhang, Y.; Xiang, J.; Zhang, W.; Wang, G.H.; Li, W.W.; Xu, L.L.; Cai, D.F. Xiao-Xu-Ming decoction preserves mitochondrial integrity and reduces apoptosis after focal cerebral ischemia and reperfusion via the mitochondrial p53 pathway. J. Ethnopharmacol. 2014, 151, 307-316.
[30] Li, Y.; Lv, O.; Zhou, F.G.; Li, Q.S.; Wu, Z.C.; Zheng, Y.R. Linalool inhibits LPS-induced inflammation in BV2 microglia cells by activating Nrf2. Neurochem. Res. 2015, 40, 1520-1525.
[31] Chamorro, A.; Hallenbeck, J. The harms and benefits of inflammatory and immune responses in vascular disease. Stroke. 2006, 37, 291-293.
[32] Kim, I.D.; Ha, B.J. The effects of paeoniflorin on LPS-induced liver inflammatory reactions. Arch. Pharm. Res. 2010, 33, 959-966.
[33] Liu, B.; Du, L.; Hong, J.S. Naloxone protects rat dopaminergic neurons against inflammatory damage through inhibition of microglia activation and superoxide generation. J. Pharmacol. Exp. Ther. 2000, 293, 607-617.
[34] Sawada, M.; Kondo, N.; Suzumura, A.; Marunouchi, T. Production of tumor necrosis factor-alpha by micro-glia and astrocytes in culture. Brain Res. 1989, 491, 394-397.
[35] Wang, S.X.; Jing, H.R.; Yang, H.Y.; Liu, Z.D.; Guo, H.; Chai, L.J.; Hu, L.M. Tanshinone I selectively suppresses pro-inflammatory genes expression in activated microglia and prevents nigrostriatal dopaminergic neurodegeneration in a mouse model of Parkinson’s disease. J. Ethnopharmacol. 2015, 164, 247-255.
[36] Kim, H.; Bae, S.; Kwon, K.Y.; Hwang, Y.I.; Kang, J.S.; Lee, W.J. A combinational effect of acetaminophen and oriental herbs on the regulation of inflammatory mediators in microglia cell line, BV2. Anat. Cell Biol. 2015, 48, 244-250.
[37] Moniruzzaman, M.; Lee, G.; Bose, S.; Choi, M.; Jung, J.K.; Lee, H.; Cho, J. Antioxidant and anti-inflammatory activities of N-((3,4-Dihydro-2H-benzo[h]chromene-2-yl)methyl)-4-methoxyaniline in LPS-induced BV2 microglial cells. Biol. Pharm. Bull. 2015, 38, 1831-1835.
[38] Henn, A.; Lund, S.; Hedtjärn, M.; Schrattenholz, A.; Pörzgen, P.; Leist, M. The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. ALTEX. 2009, 26, 83-94.
[39] Bradley, J.R.; Pober, J.S. Tumor necrosis factor receptor-associated factors(TRAFs). Oncogene. 2001, 20, 6482-6491.
[40] Barton, G.M.; Medzhitov, R. Toll-like receptor signaling pathways. Science. 2003, 300, 1524-1525.
[41] Ji, K.A.; Yang, M.S.; Jeong, H.K.; Min, K.J.; Kang, S.H.; Jou, I.; Joe, E.H. Resident microglia die and infiltrated neutrophils and monocytes become major inflammatory cells in lipopolysaccharide-injected brain. Glia. 2007, 55, 1577-1588.
[42] Lu, Y.C.; Yeh, W.C.; Ohashi, P.S. LPS/TLR4 signal transduction pathway. Cytokine. 2008, 42, 145-151.
[43] Taylor, R.A.; Sansing, L.H. Microglial responses after ischemic stroke and intracerebral hemorrhage. Clin. Dev. Immunol. 2013, 2013, 746068.
[44] Akira, S.; Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 2004, 4, 499-511.
[45] O’Neill, L.A. The role of MyD88-like adapters in Toll-like receptor signal transduction. Biochem. Soc. Trans. 2003, 31, 643-647.
[46] Kashiwada, M.; Shirakata, Y.; Inoue, J,I.; Nakano, H.; Okazaki, K.; Okumura, K.; Yamamoto, T.; Nagaoka, H.; Takemori, T. Tumor necrosis factor receptor-associated factor 6 (TRAF6) stimulates extracellular signal-regulated kinase (ERK) activity in CD40 signaling along a ras-independent pathway. J. Exp. Med. 1998, 187, 237-244.
[47] Yuan, L.; Liu, S.; Bai, X.M.; Gao, Y.; Liu, G.H.; Wang, X.E.; Liu, D.X.; Li, T.; Hao, A.J.; Wang, Z. Oxytocin inhibits lipopolysaccharide-induced inflammation in microglial cells and attenuates microglial activation in lipopolysaccharide-treated mice. J. Neuroinflamm. 2016, 13, 77.
[48] Liu, Z.J.; He, D.; Zhang, X.J.; Li, Y.H.; Zhu, C.H.; Dong, L.P.; Zhang, X.L.; Xing, Y.X.; Wang, C.H.; Qiao, H.M.; Chen, L.N. Neuroprotective effect of early and short-time applying sophoridine in pMCAO rat brain: Down-regulated TRAF6 and up-regulated p-ERK1/2 expression, ameliorated brain infaction and edema. Brain Res. Bull. 2012, 88, 379-384.
[49] Zucchelli, S.; Marcuzzi, F.; Codrich, M.; Agostoni, E.; Vilotti, S.; Biagioli, M.; Pinto, M.; Carnemolla, A.; Santoro, C.; Gustincich, S.; Persichetti, F. Tumor necrosis factor receptor-associated factor 6 (TRAF6) associates with huntingtin protein and promotes its atypical ubiquitination to enhance aggregate formation. J. Biol. Chem. 2011, 286, 25108-25117. |