Journal of Chinese Pharmaceutical Sciences ›› 2025, Vol. 34 ›› Issue (7): 605-621.DOI: 10.5246/jcps.2025.07.045
• Original articles • Next Articles
Jia Yan1,2, Yanqin Liang3,*(), Cuishuan Wu1,4, Qiang Zhang1,2,*(
)
Received:
2025-02-20
Revised:
2025-04-11
Accepted:
2025-04-24
Online:
2025-07-31
Published:
2025-07-31
Contact:
Yanqin Liang, Qiang Zhang
Supported by:
Supporting:
Jia Yan, Yanqin Liang, Cuishuan Wu, Qiang Zhang. Development of an oral organic-inorganic hybrid nanocomposite for prolonged sustained release of nifedipine[J]. Journal of Chinese Pharmaceutical Sciences, 2025, 34(7): 605-621.
Table 5. Formulation design for sustained-release materials added in equal amounts based on Formula 3 in Table 4 (The names of the formulations were designated based on the names of the sustained-release materials added).
[1] |
Bikiaris, D.; Koutris, E.; Karavas, E. New aspects in sustained drug release formulations. Recent Pat. Drug Deliv. Formul. 2007, 1, 201–213.
|
[2] |
García, C.R.; Siqueiros, A.; Benet, L.Z. Oral controlled release preparations. Pharm. Acta Helv. 1978, 53, 99–109.
|
[3] |
Heller, J. Controlled release of biologically active compounds from bioerodible polymers. Biomaterials. 1980, 1, 51–57.
|
[4] |
Hanks, G.W.; Rose, N.M.; Aherne, G.W.; Piall, E.M. Controlled release morphine. Lancet. 1981, 1, 1104–1105.
|
[5] |
Nokhodchi, A.; Raja, S.; Patel, P.; Asare-Addo, K. The role of oral controlled release matrix tablets in drug delivery systems. Bioimpacts. 2012, 2, 175–187.
|
[6] |
Sousa, C.F.V.; Monteiro, L.P.G.; Rodrigues, J.M.M.; Borges, J.; Mano, J.F. Marine-origin polysaccharides-based free-standing multilayered membranes as sustainable nanoreservoirs for controlled drug delivery. J. Mater. Chem. B. 2023, 11, 6671–6684.
|
[7] |
Wang, Y.; Yu, D.G.; Liu, Y.; Liu, Y.N. Progress of electrospun nanofibrous carriers for modifications to drug release profiles. J. Funct. Biomater. 2022, 13, 289.
|
[8] |
Lin, W.; Li, Y.K.; Shi, Q.Z.; Liao, X.R.; Zeng, Y.; Tian, W.; Xie, X.Y.; Liu, H. Preparation and evaluation of bilayer-core osmotic pump tablets contained topiramate. PLoS One. 2022, 17, e0264457.
|
[9] |
Li, N.N.; Fan, L.; Wu, B.; Dai, G.L.; Jiang, C.J.; Guo, Y.; Wang, D.L. Preparation and in vitro/in vivo evaluation of azilsartan osmotic pump tablets based on the preformulation investigation. Drug Dev. Ind. Pharm. 2019, 45, 1079–1088.
|
[10] |
Chen, H.; Fang, D.Y.; Wang, X.Y.; Gong, Y.; Ji, Y.; Pan, H. Fabrication of osmotic pump tablets utilizing semisolid extrusion three-dimensional printing technology. Int. J. Pharm. 2024, 665, 124668.
|
[11] |
Zeng, Q.P.; Liu, Z.H.; Huang, A.W.; Zhang, J.; Song, H.T. Preparation and characterization of silymarin synchronized-release microporous osmotic pump tablets. Drug Des. Devel. Ther. 2016, 10, 519–531.
|
[12] |
Huang, Y.P.; Zhang, S.S.; Shen, H.F.; Li, J.Q.; Gao, C.K. Controlled release of the nimodipine-loaded self-microemulsion osmotic pump capsules: development and characterization. AAPS PharmSciTech. 2018, 19, 1308–1319.
|
[13] |
Lew, B.; Kim, I.Y.; Choi, H.; Kim, K.K. Sustained exenatide delivery via intracapsular microspheres for improved survival and function of microencapsulated porcine islets. Drug Deliv. Transl. Res. 2018, 8, 857–862.
|
[14] |
Gan, J.J.; Sun, L.Y.; Chen, G.P.; Ma, W.J.; Zhao, Y.J.; Sun, L.Y. Mesenchymal stem cell exosomes encapsulated oral microcapsules for acute colitis treatment. Adv. Healthc. Mater. 2022, 11, e2201105.
|
[15] |
Huang, H.Q.; Wu, Z.H.; Qi, X.L.; Zhang, H.T.; Chen, Q.; Xing, J.Y.; Chen, H.Y.; Rui, Y. Compression-coated tablets of glipizide using hydroxypropylcellulose for zero-order release: in vitro and in vivo evaluation. Int. J. Pharm. 2013, 446, 211–218.
|
[16] |
Jain, S.K.; Awasthi, A.M.; Jain, N.K.; Agrawal, G.P. Calcium silicate based microspheres of repaglinide for gastroretentive floating drug delivery: Preparation and in vitro characterization. J. Control. Release. 2005, 107, 300–309.
|
[17] |
Gupta, M.K.; Vanwert, A.; Bogner, R.H. Formation of physically stable amorphous drugs by milling with neusilin. J. Pharm. Sci. 2003, 92, 536–551.
|
[18] |
Rojtanatanya, S.; Pongjanyakul, T. Propranolol–magnesium aluminum silicate complex dispersions and particles: Characterization and factors influencing drug release. Int. J. Pharm. 2010, 383, 106–115.
|
[19] |
Takeuchi, H.; Nagira, S.; Yamamoto, H.; Kawashima, Y. Solid dispersion particles of amorphous indomethacin with fine porous silica particles by using spray-drying method. Int. J. Pharm. 2005, 293, 155–164.
|
[20] |
Friedrich, H.; Fussnegger, B.; Kolter, K.; Bodmeier, R. Dissolution rate improvement of poorly water-soluble drugs obtained by adsorbing solutions of drugs in hydrophilic solvents onto high surface area carriers. Eur. J. Pharm. Biopharm. 2006, 62, 171–177.
|
[21] |
Huang, P.; Lian, D.Z.; Ma, H.L.; Gao, N.S.; Zhao, L.M.; Luan, P.; Zeng, X.W. New advances in gated materials of mesoporous silica for drug controlled release. Chin. Chem. Lett. 2021, 32, 3696–3704.
|
[22] |
Cao, Z.Q.; Wang, G.J. Multi-stimuli-responsive polymer materials: particles, films, and bulk gels. Chem. Rec. 2016, 16, 1398–1435.
|
[23] |
Tuwahatu, C.A.; Yeung, C.C.; Lam, Y.W.; Roy, V.A.L. The molecularly imprinted polymer essentials: curation of anticancer, ophthalmic, and projected gene therapy drug delivery systems. J. Control. Release. 2018, 287, 24–34.
|
[24] |
Su, Y.; Zhang, B.L.; Sun, R.W.; Liu, W.F.; Zhu, Q.B.; Zhang, X.; Wang, R.R.; Chen, C.P. PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application. Drug Deliv. 2021, 28, 1397–1418.
|
[25] |
Kriplani, P.; Guarve, K. Eudragit, a nifty polymer for anticancer preparations: a patent review. Recent Pat. Anticancer Drug Discov. 2022, 17, 92–101.
|
[26] |
Senarat, S.; Pichayakorn, W.; Phaechamud, T.; Tuntarawongsa, S. Antisolvent Eudragit® polymers based in situ forming gel for periodontal controlled drug delivery. J. Drug Deliv. Sci. Technol. 2023, 82, 104361.
|
[27] |
Jain, S.K.; Jain, A.K.; Rajpoot, K. Expedition of eudragit® polymers in the development of novel drug delivery systems. Curr. Drug Deliv. 2020, 17, 448–469.
|
[28] |
Dong, P.; Sahle, F.F.; Lohan, S.B.; Saeidpour, S.; Albrecht, S.; Teutloff, C.; Bodmeier, R.; Unbehauen, M.; Wolff, C.; Haag, R.; Lademann, J.; Patzelt, A.; Schäfer-Korting, M.; Meinke, M.C. pH-sensitive Eudragit® L 100 nanoparticles promote cutaneous penetration and drug release on the skin. J. Control. Release. 2019, 295, 214–222.
|
[29] |
Bukhovets, A.V.; Fotaki, N.; Khutoryanskiy, V.V.; Moustafine, R.I. Interpolymer complexes of eudragit® copolymers as novel carriers for colon-specific drug delivery. Polymers. 2020, 12, 1459.
|
[30] |
Dos Santos, J.; da Silva, G.S.; Velho, M.C.; Beck, R.C.R. Eudragit®: a versatile family of polymers for hot melt extrusion and 3D printing processes in pharmaceutics. Pharmaceutics. 2021, 13, 1424.
|
[31] |
Wang, S.S.; Yang, X.; Lu, W.X.; Jiang, N.; Zhang, G.Q.; Cheng, Z.N.; Liu, W.J. Spray drying encapsulation of CD-MOF nanocrystals into Eudragit® RS microspheres for sustained drug delivery. J. Drug Deliv. Sci. Technol. 2021, 64, 102593.
|
[32] |
Dereymaker, A.; Cinghia, G.; Van den Mooter, G. Eudragit® RL as a stabilizer for supersaturation and a substrate for nanocrystal formation. Eur. J. Pharm. Biopharm. 2017, 114, 250–262.
|
[33] |
Fujimori, J.; Yoshihashi, Y.; Yonemochi, E.; Terada, K. Application of Eudragit RS to thermo-sensitive drug delivery systems II. Effect of temperature on drug permeability through membrane consisting of Eudragit RS/PEG 400 blend polymers. J. Control. Release. 2005, 102, 49–57.
|
[34] |
Paraschiv, M.; Daescu, M.; Bartha, C.; Chiricuta, B.; Baibarac, M. Complex spectroscopy studies of nifedipine photodegradation. Pharmaceutics. 2023, 15, 2613.
|
[35] |
Handa, T.; Singh, S.; Singh, I.P. Characterization of a new degradation product of nifedipine formed on catalysis by atenolol: a typical case of alteration of degradation pathway of one drug by another. J. Pharm. Biomed. Anal. 2014, 89, 6–17.
|
[36] |
Wu, Y.X.; Zhong, X.F.; Li, X.M.; Liu, W.L.; Zhang, Y.X.; Shen, Q.Y.; Xu, S.M.; Xu, P.S. Pharmacokinetics of nifedipine-sustained release tablets in healthy subjects after a single oral administration: bioequivalence analysis and food effects. Clin. Pharmacol. Drug Dev. 2023, 12, 1076–1081.
|
[37] |
Mancia, G.; Cha, G.; Gil-Extremera, B.; Harvey, P.; Lewin, A.J.; Villa, G.; Kjeldsen, S.E. Blood pressure-lowering effects of nifedipine/candesartan combinations in high-risk individuals: subgroup analysis of the DISTINCT randomised trial. J. Hum. Hypertens. 2017, 31, 178–188.
|
[38] |
Sharma, K.J.; Greene, N.; Kilpatrick, S.J. Oral labetalol compared to oral nifedipine for postpartum hypertension: a randomized controlled trial. Hypertens. Pregnancy. 2017, 36, 44–47.
|
[39] |
Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319.
|
[40] |
Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The determination of pore volume and area distributions in porous substances. I. computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73, 373–380.
|
[1] | Revika Rachmaniar, Dolih Gozali, Camellia Panatarani, Wahyu Priyo Legowo, Sohadi Warya, Taofik Rusdiana. Solubility enhancement of ethyl p-methoxycinnamate under nanoscale confinement [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(6): 461-470. |
[2] | Shaojing Liu, Bei Qin, Hongfang Han, Li Li, Lili Yu, Xiaojing Xu. Preparative separation of high-purity troxerutin and related substances from mother liquor of troxerutin by silica gel column chromatography and semi-preparative liquid chromatography [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(7): 487-493. |
[3] | Lu Sun, Yujie Liu, Zhenzhen Yang, Xianrong Qi. Preparation and characterization of mesoporous silica nanoparticles with enlarged pores capped with crosslinked PEI [J]. Journal of Chinese Pharmaceutical Sciences, 2015, 24(11): 712-720. |
[4] | Jing Zhang, Hao-Jing Song, Fan-Long Bu, Chun-Min Wei, Gui-Yan Yuan, Xiao-Yan Liu, Ben-Jie Wang, Rui-Chen Guo* . Determination of nifedipine concentration in human plasma by LC-MS and its application in pharmacokinetic study [J]. , 2010, 19(6): 471-476. |
[5] | Jing Wu, Ben-Jie Wang, Chun-Min Wei, Fan-Long Bu, Rui-Chen Guo*. Pharmacokinetics of nifedipine sustained-release tablets in healthy Chinese volunteers [J]. , 2007, 16(3): 192-196. |
[6] | Chong-Dong Fu, Xue-Tao Jiang, Jin-Hong Hu, Wan-Guo Zhang. Influence of Preparation Factors on the Sustained Release of Nifedipine from Eudragit RL/RS Microspheres [J]. , 1997, 6(4): 203-210. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||