[1] |
Rachmaniar, R.; Riasari, H.; Fauziah, L.; Kenti, Ferdiansyah, R. The effect of cocrystallization method and citric acid as coformer on water solubility of ethyl p-metoxycinnamate particle. The effect of cocrystallization method and citric acid as coformer on water solubility of ethyl p-metoxycinnamate particle. AIP Conference Proceedings. 2020, 2219, 080013.
|
[2] |
Ekowati, J.; Tejo, B.A.; Sasaki, S.; Highasiyama, K.; Budiati, T. Structure modification of ethyl p-methoxycinnamate and their bioassay as chemopreventive agent against mice’s fibrosarcoma. Int. J. Pharm. Pharm. Sci. 2012, 4, 528–532.
|
[3] |
Ekowati, J.; Hardjono, S.; Hamid, I.S. Ethyl p-methoxycinnamate from kaempferia galanga inhibits angiogenesis through tyrosine kinase. Universa Med. 2016, 34, 43.
|
[4] |
Omar, M.; Hasali, N.; Yarmo, M. Cytotoxicity activity of biotransformed ethyl p-methoxycinnamate by aspergillus Niger. Orient. J. Chem. 2016, 32, 2731–2734.
|
[5] |
Nurmeilis, Azrifitria, Fitriani, N.; Komala, I. Sedative-hypnoticactivityof ethyl- p-methoxycinnamate and n-(2-hydroxyethyl)-p-methoxycinnamamide. Int. Res. J. Pharm. 2018, 9, 43–46.
|
[6] |
Fareza, M.S. Transformasi etil p-metoksisinamat menjadi asam p-metoksisinamat dari kencur (kaempheria galanga l.) beserta uji aktivitas antibakterinya. ALCHEMY J. Pen. Kim. 2017, 13, 176–190, 2017.
|
[7] |
Hakim, A.; Andayani, Y.; Deana Rahayuan, B. Isolation of ethyl p-methoxy cinnamate fromKaemferia galangaL. J. Phys. Conf. Ser. 2018, 1095, 012039.
|
[8] |
Wu, J.W.; Ge, F.H.; Wang, D.M.; Xu, X.J. Combination of supercritical fluid extraction with high-speed countercurrent chromatography for extraction and isolation of ethyl p-methoxycinnamate and ethyl cinnamate from Kaempferia galanga L. Sep. Sci. Technol. 2016, 51, 1757–1764.
|
[9] |
Ekowati, J.; Rudyanto, M.; Sasaki, S.; Budiati, T.; Sukardiman, Hermawan, A.; Meiyanto, E. Structure modification of ethyl p-methoxycinnamate isolated from kaempferia galanga Linn. and citotoxicity assay of the products on WiDr cells. Indonesian J. Cancer Chemoprevention . 2010, 1, 12.
|
[10] |
Rachmaniar, R.; Warya, S.; Ferdiansyah, R.; Riasari, H.; Gumelar, A.; Kenti. The proceedings of the 2nd Bakti Tunas Husada-Health Science International Conference (BTH-HSIC 2019). Adv. Heal. Sci. Res. 2020, 26, 96–101.
|
[11] |
Ekowati, J.; Widyowati, R.; Isadiartuti, D. Preparation of an inclusion complex system of ethyl p-methoxycinnamate-hydroxypropyl-β-cyclodextrin: Characterization and solubility evaluation. Res. J. Pharm. Biol. Chem. Sci. 2017, 8, 1486–1494.
|
[12] |
Craye, G.; Löbmann, K.; Grohganz, H.; Rades, T.; Laitinen, R. Characterization of amorphous and co-amorphous simvastatin formulations prepared by spray drying. Mol. Basel Switz. 2015, 20, 21532–21548.
|
[13] |
Bavishi, D.D.; Borkhataria, C.H. Spring and parachute: how cocrystals enhance solubility. Prog. Cryst. Growth Charact. Mater. 2016, 62, 1–8.
|
[14] |
Chaudhari, S.; Gupte, A. Mesoporous silica as a carrier for amorphous solid dispersion. Br. J. Pharm. Res. 2017, 16, 1–19.
|
[15] |
Bi, Y.P.; Xiao, D.L.; Ren, S.; Bi, S.Y.; Wang, J.Z.; Li, F. The binary system of ibuprofen-nicotinamide under nanoscale confinement: from cocrystal to coamorphous state. J. Pharm. Sci. 2017, 106, 3150–3155.
|
[16] |
Bharti, C.; Gulati, N.; Nagaich, U.; Pal, A. Mesoporous silica nanoparticles in target drug delivery system: a review. Int. J. Pharm. Investig. 2015, 5, 124.
|
[17] |
Zhang, W.; Zheng, N.; Chen, L.; Xie, L.Y.; Cui, M.S.; Li, S.M.; Xu, L. Effect of shape on mesoporous silica nanoparticles for oral delivery of indomethacin. Pharmaceutics. 2018, 11, 4.
|
[18] |
AbouAitah, K.E.A.; Farghali, A.A. Mesoporous silica materials in drug delivery system: pH/glutathione- responsive release of poorly water-soluble pro-drug quercetin from two and three-dimensional pore-structure nanoparticles. J. Nanomed. Nanotechnol. 2016, 7, 360.
|
[19] |
Yang, G.; Li, Z.; Wu, F.H.; Chen, M.Y.; Wang, R.; Zhu, H.; Li, Q.; Yuan, Y.F. Improving solubility and bioavailability of breviscapine with mesoporous silica nanoparticles prepared using ultrasound-assisted solution-enhanced dispersion by supercritical fluids method. Int. J. Nanomed. 2020, 15, 1661–1675.
|
[20] |
Ambrogi, V.; Perioli, L.; Marmottini, F.; Giovagnoli, S.; Esposito, M.; Rossi, C. Improvement of dissolution rate of piroxicam by inclusion into MCM-41 mesoporous silicate. Eur. J. Pharm. Sci. 2007, 32, 216–222.
|
[21] |
Ambrogi, V.; Perioli, L.; Marmottini, F.; Accorsi, O.; Pagano, C.; Ricci, M.; Rossi, C. Role of mesoporous silicates on carbamazepine dissolution rate enhancement. Microporous Mesoporous Mater. 2008, 113, 445–452.
|
[22] |
Jambhrunkar, S.; Qu, Z.; Popat, A.; Karmakar, S.; Xu, C.; Yu, C.Z. Modulating in vitro release and solubility of griseofulvin using functionalized mesoporous silica nanoparticles. J. Colloid Interface Sci. 2014, 434, 218–225.
|
[23] |
Shah, P.V.; Rajput, S.J. A comparative in vitro release study of raloxifene encapsulated ordered MCM-41 and MCM-48 nanoparticles: a dissolution kinetics study in simulated and biorelevant media. J. Drug Deliv. Sci. Technol. 2017, 41, 31–44.
|
[24] |
Tzankov, B.; Voycheva, C.; Aluani, D.; Yordanov, Y.; Avramova, K.; Tzankova, V.; Spassova, I.; Kovacheva, D.; Yoncheva, K. Improvement of dissolution of poorly soluble glimepiride by loading on two types of mesoporous silica carriers. J. Solid State Chem. 2019, 271, 253–259.
|
[25] |
Ahern, R.J.; Hanrahan, J.P.; Tobin, J.M.; Ryan, K.B.; Crean, A.M. Comparison of fenofibrate-mesoporous silica drug-loading processes for enhanced drug delivery. Eur. J. Pharm. Sci. 2013, 50, 400–409.
|
[26] |
Albayati, T.M.; Salih, I.K.; Alazzawi, H.F. Synthesis and characterization of a modified surface of SBA-15 mesoporous silica for a chloramphenicol drug delivery system. Heliyon. 2019, 5, e02539.
|
[27] |
Wu, C.; Sun, X.H.; Zhao, Z.Z.; Zhao, Y.; Hao, Y.N.; Liu, Y.; Gao, Y. Synthesis of novel core-shell structured dual-mesoporous silica nanospheres and their application for enhancing the dissolution rate of poorly water-soluble drugs. Mater. Sci. Eng. C. 2014, 44, 262–267.
|
[28] |
Zhang, P.; Zardán Gómez de la Torre, T.; Welch, K.; Bergström, C.; Strømme, M. Supersaturation of poorly soluble drugs induced by mesoporous magnesium carbonate. Eur. J. Pharm. Sci. 2016, 93, 468–474.
|
[29] |
Komala, I.; Supandi, S.; Nurhasni, N.; Betha, O.S.; Putri, E.; Mufidah, S.; Awaludin, M.F.; Fahmi, M.; Reza, M.; Indriyani, N.P. Structure-activity relationship study on the ethyl p-methoxycinnamate as an anti-inflammatory agent. Indones. J. Chem. 2018, 18, 60.
|
[30] |
Komala, I.; Supandi, S.; Hardiansyah, M.M. Direct amidation of ethyl p-methoxycinnamate to produce N,N-bis-(2-hydroxyethyl)-p-methoxycinnamamide. J. Kimia VALENSI. 2018, 4, 22–25.
|
[31] |
Budiman, A.; Higashi, K.; Ueda, K.; Moribe, K. Effect of drug-coformer interactions on drug dissolution from a coamorphous in mesoporous silica. Int. J. Pharm. 2021, 600, 120492
|
[32] |
Bi, Y.P.; Wu, C.N.; Xin, M.; Bi, S.Y.; Yan, C.X.; Hao, J.F.; Li, F.; Li, S. Facile large-scale preparation of mesoporous silica microspheres with the assistance of sucrose and their drug loading and releasing properties. Int. J. Pharm. 2016, 500, 77–84.
|
[33] |
Chiang, Y.D.; Lian, H.Y.; Leo, S.Y.; Wang, S.G.; Yamauchi, Y.; Wu, K.C.W. Controlling particle size and structural properties of mesoporous silica nanoparticles using the taguchi method. J. Phys. Chem. C. 2011, 115, 13158–13165.
|
[34] |
Thahir, R.; Wahab, A.W.; Nafie, N.L.; Raya, I. Synthesis of high surface area mesoporous silica SBA-15 by adjusting hydrothermal treatment time and the amount of polyvinyl alcohol. Open Chem. 2019, 17, 963–971
|
[35] |
Bavnhøj, C.G.; Knopp, M.M.; Madsen, C.M.; Löbmann, K. The role interplay between mesoporous silica pore volume and surface area and their effect on drug loading capacity. Int. J. Pharm. X. 2019, 1, 100008.
|
[36] |
Cheng, S.X.; McKenna, G.B. Nanoconfinement effects on the glass transition and crystallization behaviors of nifedipine. Mol. Pharm. 2019, 16, 856–866.
|