Journal of Chinese Pharmaceutical Sciences ›› 2024, Vol. 33 ›› Issue (5): 396-411.DOI: 10.5246/jcps.2024.05.030
• Review • Previous Articles Next Articles
Tao Zhang1, Haochen Han1, Liang Zhao2, Yijing Zhang1, Yu Deng1, Yongheng He2,*()
Received:
2023-10-12
Revised:
2023-11-12
Accepted:
2024-01-23
Online:
2024-05-31
Published:
2024-05-31
Contact:
Yongheng He
Supported by:
Supporting:
Tao Zhang, Haochen Han, Liang Zhao, Yijing Zhang, Yu Deng, Yongheng He. Advancements in cellular senescence-based therapeutic approaches for colorectal cancer: a comparative study of Chinese and western medications[J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(5): 396-411.
[1] |
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. Cancer J. Clin. 2022, 72, 7–33.
|
[2] |
Siegel, R.L.; Miller, K.D.; Goding Sauer, A.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2020. Cancer J. Clin. 2020, 70, 145–164.
|
[3] |
Biller, L.H.; Schrag, D. Diagnosis and treatment of metastatic colorectal cancer: a review. JAMA. 2021, 325, 669–685.
|
[4] |
Rivera, M.; Fichtner, I.; Wulf-Goldenberg, A.; Sers, C.; Merk, J.; Patone, G.; Alp, K.M.; Kanashova, T.; Mertins, P.; Hoffmann, J.; Stein, U.; Walther, W. Patient-derived xenograft (PDX) models of colorectal carcinoma (CRC) as a platform for chemosensitivity and biomarker analysis in personalized medicine. Neoplasia. 2021, 23, 21–35.
|
[5] |
Saltz Leonard, B.; Meropol Neal, J.; Loehrer Patrick, J.; Needle Michael, N.; Justin, K.; Mayer Robert, J. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J. Clin. Oncol. 2004, 22, 1201–1208.
|
[6] |
van Deursen, J.M. The role of senescent cells in ageing. Nature. 2014, 509, 439–446.
|
[7] |
Muñoz-Espín, D.; Serrano, M. Cellular senescence: from physiology to pathology. Nat. Rev. Mol. Cell Biol. 2014, 15, 482–496.
|
[8] |
Muñoz-Espín, D.; Cañamero, M.; Maraver, A.; Gómez-López, G.; Contreras, J.; Murillo-Cuesta, S.; Rodríguez-Baeza, A.; Varela-Nieto, I.; Ruberte, J.; Collado, M.; Serrano, M. Programmed cell senescence during mammalian embryonic development. Cell. 2013, 155, 1104–1118.
|
[9] |
Demaria, M.; Ohtani, N.; Youssef, S.A.; Rodier, F.; Toussaint, W.; Mitchell, J.R.; Laberge, R.M.; Vijg, J.; Van Steeg, H.; Dollé, M.E.T.; Hoeijmakers, J.H.J.; de Bruin, A.; Hara, E.; Campisi, J. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell. 2014, 31, 722–733.
|
[10] |
Collado, M.; Serrano, M. Senescence in tumours: evidence from mice and humans. Nat. Rev. Cancer. 2010, 10, 51–57.
|
[11] |
Frey, N.; Venturelli, S.; Zender, L.; Bitzer, M. Cellular senescence in gastrointestinal diseases: from pathogenesis to therapeutics. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 81–95.
|
[12] |
Hayflick, L.; Moorhead, P.S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 1961, 25, 585–621.
|
[13] |
Calcinotto, A.; Kohli, J.; Zagato, E.; Pellegrini, L.; Demaria, M.; Alimonti, A. Cellular senescence: aging, cancer, and injury. Physiol. Rev. 2019, 99, 1047–1078.
|
[14] |
Sharpless, N.E.; Sherr, C.J. Forging a signature of in vivo senescence. Nat. Rev. Cancer. 2015, 15, 397–408.
|
[15] |
Muñoz-Espín, D.; Serrano, M. Cellular senescence: from physiology to pathology. Nat. Rev. Mol. Cell Biol. 2014, 15, 482–496.
|
[16] |
Petrova, N.V.; Velichko, A.K.; Razin, S.V.; Kantidze, O.L. Small molecule compounds that induce cellular senescence. Aging Cell. 2016, 15, 999–1017.
|
[17] |
Wiley, C.D.; Velarde, M.C.; Lecot, P.; Liu, S.; Sarnoski, E.A.; Freund, A.; Shirakawa, K.; Lim, H.W.; Davis, S.S.; Ramanathan, A.; Gerencser, A.A.; Verdin, E.; Campisi, J. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab. 2016, 23, 303–314.
|
[18] |
Hernandez-Segura, A.; de Jong, T.V.; Melov, S.; Guryev, V.; Campisi, J.; Demaria, M. Unmasking transcriptional heterogeneity in senescent cells. Curr. Biol. 2017, 27, 2652–2660.e4.
|
[19] |
Lee, B.Y.; Han, J.; Im, J.S.; Morrone, A.; Johung, K.; Goodwin, E.C.; Kleijer, W.J.; DiMaio, D.; Hwang, E.S. Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell. 2006, 5, 187–195.
|
[20] |
Gorgoulis, V.; Adams, P.D.; Alimonti, A.; Bennett, D.C.; Bischof, O.; Bishop, C.; Campisi, J.; Collado, M.; Evangelou, K.; Ferbeyre, G.; Gil, J.; Hara, E.; Krizhanovsky, V.; Jurk, D.; Maier, A.B.; Narita, M.; Niedernhofer, L.; Passos, J.F.; Robbins, P.D.; Schmitt, C.A.; Demaria, M. Cellular senescence: defining a path forward. Cell. 2019, 179, 813–827.
|
[21] |
Coppé, J.P.; Patil, C.K.; Rodier, F.; Sun, Y.; Muñoz, D.P.; Goldstein, J.; Nelson, P.S.; Desprez, P.Y.; Campisi, J. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008, 6, 2853–2868.
|
[22] |
Coppé, J.P.; Desprez, P.Y.; Krtolica, A.; Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. Mech. Dis. 2010, 5, 99–118.
|
[23] |
Ritschka, B.; Storer, M.; Mas, A.; Heinzmann, F.; Ortells, M.C.; Morton, J.P.; Sansom, O.J.; Zender, L.; Keyes, W.M. The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev. 2017, 31, 172–183.
|
[24] |
Acosta, J.C.; Banito, A.; Wuestefeld, T.; Georgilis, A.; Janich, P.; Morton, J.P.; Athineos, D.; Kang, T.W.; Lasitschka, F.; Andrulis, M.; Pascual, G.; Morris, K.J.; Khan, S.; Jin, H.; Dharmalingam, G.; Snijders, A.P.; Carroll, T.; Capper, D.; Pritchard, C.; Inman, G.J.; Longerich, T.; Sansom, O.J.; Benitah, S.A.; Zender, L.; Gil, J. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 2013, 15, 978–990.
|
[25] |
Di Mitri, D.; Alimonti, A. Non-cell-autonomous regulation of cellular senescence in cancer. Trends Cell Biol. 2016, 26, 215–226.
|
[26] |
Hernandez-Segura, A.; Nehme, J.; Demaria, M. Hallmarks of cellular senescence. Trends Cell Biol. 2018, 28, 436–453.
|
[27] |
Shay, J.W.; Bacchetti, S. A survey of telomerase activity in human cancer. Eur. J. Cancer. 1997, 33, 787–791.
|
[28] |
Wang, X.; Wong, S.C.; Pan, J.; Tsao, S. W.; Fung, K.H.; Kwong, D.L.; Sham, J.S.; Nicholls, J.M. Evidence of cisplatin-induced senescent-like growth arrest in nasopharyngeal carcinoma cells. Cancer Res. 1998, 58, 5019–5022.
|
[29] |
Chang, B.D.; Broude, E.V.; Dokmanovic, M.; Zhu, H.; Ruth, A.; Xuan, Y.; Kandel, E.S.; Lausch, E.; Christov, K.; Roninson, I.B. A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res. 1999, 59, 3761–3767.
|
[30] |
Gewirtz, D.A.; Holt, S.E.; Elmore, L.W. Accelerated senescence: an emerging role in tumor cell response to chemotherapy and radiation. Biochem. Pharmacol. 2008, 76, 947–957.
|
[31] |
te Poele, R.H.; Okorokov, A.L.; Jardine, L.; Cummings, J.; Joel, S.P. DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res. 2002, 62, 1876–1883.
|
[32] |
Ewald, J.A.; Desotelle, J.A.; Wilding, G.; Jarrard, D.F. Therapy-induced senescence in cancer. J. Nat. Cancer Inst. 2010, 102, 1536–1546.
|
[33] |
Saleh, T.; Bloukh, S.; Carpenter, V.J.; Alwohoush, E.; Bakeer, J.; Darwish, S.; Azab, B.; Gewirtz, D.A. Therapy-induced senescence: an old friend becomes the enemy. Cancers. 2020, 12, 822.
|
[34] |
Chang, B.D.; Xuan, Y.Z.; Broude, E.V.; Zhu, H.M.; Schott, B.; Fang, J.; Roninson, I.B. Role of p53 and p21waf1/cip1 in senescence-like terminal proliferation arrest induced in human tumor cells by chemotherapeutic drugs. Oncogene. 1999, 18, 4808–4818.
|
[35] |
Mosieniak, G.; Sliwinska, M.A.; Alster, O.; Strzeszewska, A.; Sunderland, P.; Piechota, M.; Was, H.; Sikora, E. Polyploidy formation in doxorubicin-treated cancer cells can favor escape from senescence. Neoplasia. 2015, 17, 882–893.
|
[36] |
Bojko, A.; Czarnecka-Herok, J.; Charzynska, A.; Dabrowski, M.; Sikora, E. Diversity of the senescence phenotype of cancer cells treated with chemotherapeutic agents. Cells. 2019, 8, 1501.
|
[37] |
Kellers, F.; Fernandez, A.; Konukiewitz, B.; Schindeldecker, M.; Tagscherer, K.E.; Heintz, A.; Jesinghaus, M.; Roth, W.; Foersch, S. Senescence-Associated Molecules and Tumor-Immune-Interactions as Prognostic Biomarkers in Colorectal Cancer. Front. Med. 2022, 9, 865230.
|
[38] |
Han, Z.Y.; Wei, W.Y.; Dunaway, S.; Darnowski, J.W.; Calabresi, P.; Sedivy, J.; Hendrickson, E.A.; Balan, K.V.; Pantazis, P.; Wyche, J.H. Role of p21 in apoptosis and senescence of human colon cancer cells treated with camptothecin. J. Biol. Chem. 2002, 277, 17154–17160.
|
[39] |
Zhang, J.W.; Zhang, S.S.; Song, J.R.; Sun, K.; Zong, C.; Zhao, Q.D.; Liu, W.T.; Li, R.; Wu, M.C.; Wei, L.X. Autophagy inhibition switches low-dose camptothecin-induced premature senescence to apoptosis in human colorectal cancer cells. Biochem. Pharmacol. 2014, 90, 265–275.
|
[40] |
Liu, X.; Guo, W.J.; Zhang, X.W.; Cai, X.; Tian, S.; Li, J. Cetuximab enhances the activities of irinotecan on gastric cancer cell lines through downregulating the EGFR pathway upregulated by irinotecan. Cancer Chemother. Pharmacol. 2011, 68, 871–878.
|
[41] |
Sun, X.R.; Shi, B.Y.; Zheng, H.L.; Min, L.; Yang, J.; Li, X.Y.; Liao, X.X.; Huang, W.X.; Zhang, M.M.; Xu, S.; Zhu, Z.; Cui, H.J.; Liu, X.G. Senescence-associated secretory factors induced by cisplatin in melanoma cells promote non-senescent melanoma cell growth through activation of the ERK1/2-RSK1 pathway. Cell Death Dis. 2018, 9, 260.
|
[42] |
You, R.; Dai, J.; Zhang, P.; Barding, G. Jr, Raftery, D. Dynamic metabolic response to adriamycin-induced senescence in breast cancer cells. Metabolites. 2018, 8, 95.
|
[43] |
Li, W.; Wang, W.; Dong, H.; Li, Y.; Li, L.; Han, L.F.; Han, Z.Q.; Wang, S.X.; Ma, D.; Wang, H. Cisplatin-induced senescence in ovarian cancer cells is mediated by GRP78. Oncol. Rep. 2014, 31, 2525–2534.
|
[44] |
Nakayama, K.; Rahman, M.; Rahman, M.T.; Nakamura, K.; Sato, E.; Katagiri, H.; Ishibashi, T.; Ishikawa, M.; Iida, K.; Razia, S.; Ishikawa, N.; Kyo, S. Nucleus accumbens-1/GADD45GIP1 axis mediates cisplatin resistance through cellular senescence in ovarian cancer. Oncol. Lett. 2017, 13, 4713–4719.
|
[45] |
Qu, K.; Lin, T.; Wang, Z.X.; Liu, S.N.; Chang, H.L.; Xu, X.S.; Meng, F.D.; Zhou, L.; Wei, J.C.; Tai, M.H.; Dong, Y.F.; Liu, C. Reactive oxygen species generation is essential for cisplatininduced accelerated senescence in hepatocellular carcinoma. Front. Med. 2014, 8, 227–235.
|
[46] |
Seignez, C.; Martin, A.; Rollet, C.E.; Racoeur, C.; Scagliarini, A.; Jeannin, J.F.; Bettaieb, A.; Paul, C. Senescence of tumor cells induced by oxaliplatin increases the efficiency of a lipid A immunotherapy via the recruitment of neutrophils. Oncotarget. 2014, 5, 11442–11451.
|
[47] |
Mosieniak, G.; Sliwinska, M.A.; Alster, O.; Strzeszewska, A.; Sunderland, P.; Piechota, M.; Was, H.; Sikora, E. Polyploidy formation in doxorubicin-treated cancer cells can favor escape from senescence. Neoplasia. 2015, 17, 882–893.
|
[48] |
Chang, B.D.; Broude, E.V.; Dokmanovic, M.; Zhu, H.; Ruth, A.; Xuan, Y.; Kandel, E.S.; Lausch, E.; Christov, K.; Roninson, I.B. A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res. 1999, 59, 3761–3767.
|
[49] |
Khongkow, P.; Gomes, A.R.; Gong, C.; Man, E.P.S.; W-H Tsang, J.; Zhao, F.; Monteiro, L.J.; Coombes, R.C.; Medema, R.H.; Khoo, U.S.; Lam, E.W.F. Paclitaxel targets FOXM1 to regulate KIF20A in mitotic catastrophe and breast cancer paclitaxel resistance. Oncogene. 2016, 35, 990–1002.
|
[50] |
Demaria, M.; O’Leary, M.N.; Chang, J.H.; Shao, L.J.; Liu, S.; Alimirah, F.; Koenig, K.; Le, C.; Mitin, N.; Deal, A.M.; Alston, S.; Academia, E.C.; Kilmarx, S.; Valdovinos, A.; Wang, B.S.; de Bruin, A.; Kennedy, B.K.; Melov, S.; Zhou, D.H.; Sharpless, N.E.; Muss, H.; Campisi, J. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 2017, 7, 165–176.
|
[51] |
Ota, H.; Eto, M.; Ako, J.; Ogawa, S.; Iijima, K.; Akishita, M.; Ouchi, Y. Sirolimus and everolimus induce endothelial cellular senescence via sirtuin 1 down-regulation. J. Am. Coll. Cardiol. 2009, 53, 2298–2305.
|
[52] |
Lee, Y.H.; Kang, B.S.; Bae, Y.S. Premature senescence in human breast cancer and colon cancer cells by tamoxifen-mediated reactive oxygen species generation. Life Sci. 2014, 97, 116–122.
|
[53] |
Tuttle, R.; Miller, K.R.; Maiorano, J.N.; Termuhlen, P.M.; Gao, Y.P.; Berberich, S.J. Novel senescence associated gene, YPEL3, is repressed by estrogen in ER+ mammary tumor cells and required for tamoxifen-induced cellular senescence. Int. J. Cancer. 2012, 130, 2291–2299.
|
[54] |
Hasan, M.R.; Ho, S.H.Y.; Owen, D.A.; Tai, I.T. Inhibition of VEGF induces cellular senescence in colorectal cancer cells. Int. J. Cancer. 2011, 129, 2115–2123.
|
[55] |
Alotaibi, M.; Sharma, K.; Saleh, T.; Povirk, L.F.; Hendrickson, E.A.; Gewirtz, D.A. Radiosensitization by PARP inhibition in DNA repair proficient and deficient tumor cells: proliferative recovery in senescent cells. Radiat. Res. 2016, 185, 229.
|
[56] |
Borchert, S.; Wessolly, M.; Schmeller, J.; Mairinger, E.; Kollmeier, J.; Hager, T.; Mairinger, T.; Herold, T.; Christoph, D.C.; Walter, R.F.H.; Eberhardt, W.E.E.; Plönes, T.; Wohlschlaeger, J.; Aigner, C.; Schmid, K.W.; Mairinger, F.D. Gene expression profiling of homologous recombination repair pathway indicates susceptibility for olaparib treatment in malignant pleural mesothelioma in vitro. BMC Cancer. 2019, 19, article number 108.
|
[57] |
Low, Z.X.; OuYong, B.M.; Hassandarvish, P.; Poh, C.L.; Ramanathan, B. Antiviral activity of silymarin and baicalein against dengue virus. Sci. Rep. 2021, 11, 21221.
|
[58] |
de Oliveira, M.R.; Nabavi, S.F.; Habtemariam, S.; Erdogan Orhan, I.; Daglia, M.; Nabavi, S.M. The effects of baicalein and baicalin on mitochondrial function and dynamics: a review. Pharmacol. Res. 2015, 100, 296–308.
|
[59] |
Park, Y.G.; Choi, J.; Jung, H.K.; Kim, B.; Kim, C.; Park, S.Y.; Seol, J.W. Baicalein inhibits tumor progression by inhibiting tumor cell growth and tumor angiogenesis. Oncol. Rep. 2017, 38, 3011–3018.
|
[60] |
Dou, J.E.; Wang, Z.; Ma, L.; Peng, B.; Mao, K.; Li, C.Q.; Su, M.Q.; Zhou, C.L.; Peng, G.Y. Baicalein and baicalin inhibit colon cancer using two distinct fashions of apoptosis and senescence. Oncotarget. 2018, 9, 20089–20102.
|
[61] |
Al-Ayyoubi, S.; Gali-Muhtasib, H. Differential apoptosis by gallotannin in human colon cancer cells with distinct p53 status. Mol. Carcinog. 2007, 46, 176–186.
|
[62] |
Zhao, F.C.; Zhao, Z.X.; Han, Y.R.; Li, S.J.; Liu, C.L.; Jia, K. Baicalin suppresses lung cancer growth phenotypes via miR-340-5p/NET1 axis. Bioengineered. 2021, 12, 1699–1707.
|
[63] |
Zhou, W.Q.; Gao, M.; Liang, C.X.; Lin, B.T.; Wu, Q.H.; Chen, R.K.; Xiong, X.X.; Chen, X.; Wang, S.J.; Wu, L.T.; Wu, Y.L.; Li, H.Q.; Fu, X.; Hong, W. Systematic understanding of the mechanism of baicalin against gastric cancer using transcriptome analysis. BioMed Res. Int. 2021, 2021, 1–11.
|
[64] |
Kong, N.; Chen, X.Y.; Feng, J.; Duan, T.; Liu, S.P.; Sun, X.N.; Chen, P.; Pan, T.; Yan, L.L.; Jin, T.; Xiang, Y.; Gao, Q.; Wen, C.Y.; Ma, W.R.; Liu, W.C.; Zhang, M.M.; Yang, Z.Y.; Wang, W.G.; Zhang, R.N.; Chen, B.; Tao, W. Baicalin induces ferroptosis in bladder cancer cells by downregulating FTH1. Acta Pharm. Sin. B. 2021, 11, 4045–4054.
|
[65] |
Song, L.J.; Zhu, S.M.; Liu, C.; Zhang, Q.X.; Liang, X. Baicalin triggers apoptosis, inhibits migration, and enhances anti-tumor immunity in colorectal cancer via TLR4/NF-κB signaling pathway. J. Food Biochem. 2022, 46, e13703.
|
[66] |
Wang, Z.; Ma, L.M.; Su, M.Q.; Zhou, Y.R.; Mao, K.; Li, C.Q.; Peng, G.Y.; Zhou, C.L.; Shen, B.Y.; Dou, J. Baicalin induces cellular senescence in human colon cancer cells via upregulation of DEPP and the activation of Ras/Raf/MEK/ERK signaling. Cell Death Dis. 2018, 9, 217.
|
[67] |
Chen, T. Study on the mechanism of LncRNA PANDAR in curcumin-induced aging and apoptosis transformation of colorectal cancer cells. Nanjing Med. Univ. 2018.
|
[68] |
Zia, A.; Farkhondeh, T.; Pourbagher-Shahri, A.M.; Samarghandian, S. The role of curcumin in aging and senescence: molecular mechanisms. Biomed. Pharmacother. 2021, 134, 111119.
|
[69] |
Yasuda, S.; Horinaka, M.; Iizumi, Y.; Goi, W.; Sukeno, M.; Sakai, T. Oridonin inhibits SASP by blocking p38 and NF-κB pathways in senescent cells. Biochem. Biophys. Res. Commun. 2022, 590, 55–62.
|
[70] |
An, Y.P.; Zhu, J.; Wang, X.; Sun, X.P.; Luo, C.X.; Zhang, Y.K.; Ye, Y.W.; Li, X.W.; Abulizi, A.; Huang, Z.Z.; Zhang, H.; Yang, B.X.; Xie, Z.W. Oridonin delays aging through the AKT signaling pathway. Front. Pharmacol. 2022, 13, 888247.
|
[71] |
Gao, F.H.; Guo, Z.Y.; Xu, M.H.; Wang, S.T.; Oridonin induces apoptosis and senescence of colorectal cancer SW1116 cells in vitro and in vivo. J. Shanghai Jiaotong Univ. 2010, 30, 683–688.
|
[72] |
Huang, W.W.; Yang, J.S.; Lin, M.W.; Chen, P.Y.; Chiou, S.M.; Chueh, F.S.; Lan, Y.H.; Pai, S.J.; Tsuzuki, M.; Ho, W.J.; Chung, J.G. Cucurbitacin E induces G(2)/M phase arrest through STAT3/p53/p21 signaling and provokes apoptosis via fas/CD95 and mitochondria-dependent pathways in human bladder cancer T24 cells. Evid. Based Complement. Alternat. Med. 2012, 2012, 952762.
|
[73] |
He, X.L.; Gao, Q.; Qiang, Y.Y.; Guo, W.; Ma, Y.D. Cucurbitacin E induces apoptosis of human prostate cancer cells via cofilin-1 and mTORC1. Oncol. Lett. 2017, 13, 4905–4910.
|
[74] |
Wang, Y.; Xu, S.M.; Wu, Y.C.; Zhang, J.F. Cucurbitacin E inhibits osteosarcoma cells proliferation and invasion through attenuation of PI3K/AKT/mTOR signalling pathway. Biosci. Rep. 2016, 36, e00405.
|
[75] |
Liu, W. The role and underlying mechanism of cucurbitacin E on chemosensitization of colon cancer cells. Shanxi Univ. 2020.
|
[76] |
Yang, P.; Lian, Q.; Fu, R.; Ding, G.B.; Amin, S.; Li, Z.W.; Li, Z.Y. Cucurbitacin E triggers cellular senescence in colon cancer cells via regulating the miR-371b-5p/TFAP4 signaling pathway. J. Agric. Food Chem. 2022, 70, 2936–2947.
|
[77] |
Luo, Q.Z.; Yang, D.H.; Wu, Z.L.; Z, Y. Analysis of the Constituents of Volatile Oil in Rhizoma Tatarinowii by Using GC-MS. China J. Pharm. Econ. 2021, 16, 116–120.
|
[78] |
Hei, X.X.; Xie, M.; Xu, J.Q.; Li, J.J.; Liu, T. β-asarone exerts antioxidative effects on H2O2-stimulated PC12 cells by activating Nrf2/HO-1 pathway. Neurochem. Res. 2020, 45, 1953–1961.
|
[79] |
Chang, W.; Teng, J. β-asarone prevents Aβ25-35-induced inflammatory responses and autophagy in SH-SY5Y cells: down expression Beclin-1, LC3B and up expression Bcl-2. Inter. J. Clin. Exper. Med. 2015, 8, 20658–20663.
|
[80] |
Chen, M.; Zhuang, Y.W.; Wu, C.E.; Peng, H.Y.; Qian, J.; Zhou, J.Y. β‑asarone suppresses HCT116 colon cancer cell proliferation and liver metastasis in part by activating the innate immune system. Oncol. Lett. 2021, 21, 435.
|
[81] |
Liu, L.N.; Wang, J.J.; Shi, L.; Zhang, W.J.; Du, X.Y.; Wang, Z.P.; Zhang, Y. β-Asarone induces senescence in colorectal cancer cells by inducing lamin B1 expression. Phytomedicine. 2013, 20, 512–520.
|
[82] |
Massi, A.; Bortolini, O.; Ragno, D.; Bernardi, T.; Sacchetti, G.; Tacchini, M.; De Risi, C. Research progress in the modification of quercetin leading to anticancer agents. Molecules. 2017, 22, 1270.
|
[83] |
Shafabakhsh, R.; Asemi, Z. Quercetin: a natural compound for ovarian cancer treatment. J. Ovarian Res. 2019, 12, 55.
|
[84] |
Bishayee, K.; Ghosh, S.; Mukherjee, A.; Sadhukhan, R.; Mondal, J.; Khuda-Bukhsh, A.R. Quercetin induces cytochrome-c release and ROS accumulation to promote apoptosis and arrest the cell cycle in G2/M, in cervical carcinoma: signal cascade and drug-DNA interaction. Cell Prolif. 2013, 46, 153–163.
|
[85] |
Catanzaro, D.; Ragazzi, E.; Vianello, C.; Caparrotta, L.; Montopoli, M. Effect of quercetin on cell cycle and cyclin expression in ovarian carcinoma and osteosarcoma cell lines. Nat. Prod. Commun. 2015, 10, 1934578X1501000.
|
[86] |
Liu, Y.E.; Tang, Z.G.; Lin, Y.; Qu, X.G.; Lv, W.; Wang, G.B.; Li, C.L. Effects of quercetin on proliferation and migration of human glioblastoma U251 cells. Biomed. Pharmacother. 2017, 92, 33–38.
|
[87] |
Özsoy, S.; Becer, E.; Kabadayı, H.; Vatansever, H.S.; Yücecan, S. Quercetin-mediated apoptosis and cellular senescence in human colon cancer. Anti-Cancer Agents Med. Chem. 2020, 20, 1387–1396.
|
[88] |
Ma, P.Y.; Che, D.L.; Zhao, T.T.; Zhang, Y.J.; Li, C.M.; An, H.L.; Zhang, T.; He, H.Z. Magnolin inhibits IgE/Ag-induced allergy in vivo and in vitro. Int. Imm. 2019, 76, 105867.
|
[89] |
Wang, J.; Zhang, S.C.; Huang, K.; Shi, L.; Zhang, Q.Y. Magnolin inhibits proliferation and invasion of breast cancer MDA-MB-231 cells by targeting the ERK1/2 signaling pathway. Chem. Pharm. Bull. 2020, 68, 421–427.
|
[90] |
Yu, H.Y.; Yin, S.S.; Zhou, S.Y.; Shao, Y.Y.; Sun, J.C.; Pang, X.; Han, L.F.; Zhang, Y.; Gao, X.M.; Jin, C.Y.; Qiu, Y.L.; Wang, T. Magnolin promotes autophagy and cell cycle arrest via blocking LIF/Stat3/Mcl-1 axis in human colorectal cancers. Cell Death Dis. 2018, 9, 702.
|
[91] |
Huang, Y.Q.; Zou, X.Y.; Zhang, X.W.; Wang, F.; Zhu, W.D.; Zhang, G.Y.; Xiao, J.; Chen, M. Magnolin inhibits prostate cancer cell growth in vitro and in vivo. Biomed. Pharmacother. 2017, 87, 714–720.
|
[92] |
Song, J.H.; Lee, C.J.; An, H.J.; Yoo, S.M.; Kang, H.C.; Lee, J.Y.; Kim, K.D.; Kim, D.J.; Lee, H.S.; Cho, Y.Y. Magnolin targeting of ERK1/2 inhibits cell proliferation and colony growth by induction of cellular senescence in ovarian cancer cells. Mol. Carcinog. 2019, 58, 88–101.
|
[93] |
Mun, J.G.; Han, Y.H.; Jeon, H.D.; Yoon, D.H.; Lee, Y.G.; Hong, S.H.; Kee, J.Y. Inhibitory effect of gallotannin on lung metastasis of metastatic colorectal cancer cells by inducing apoptosis, cell cycle arrest and autophagy. Am. J. Chin. Med. 2021, 49, 1535–1555.
|
[94] |
Al-Ayyoubi, S.; Gali-Muhtasib, H. Differential apoptosis by gallotannin in human colon cancer cells with distinct p53 status. Mol. Carcinog. 2007, 46, 176–186.
|
[95] |
Al-Halabi, R.; Abou Merhi, R.; Chakilam, S.; El-Baba, C.; Hamade, E.; Di Fazio, P.; Ocker, M.; Schneider-Stock, R.; Gali-Muhtasib, H. Gallotannin is a DNA damaging compound that induces senescence independently of p53 and p21 in human colon cancer cells. Mol. Carcinog. 2015, 54, 1037–1050.
|
[96] |
Chen, Y.C.; Chen, P.N.; Lin, C.W.; Yang, W.E.; Ho, Y.T.; Yang, S.F.; Chuang, C.Y. Cantharidic acid induces apoptosis in human nasopharyngeal carcinoma cells through p38-mediated upregulation of caspase activation. Environ. Toxicol. 2020, 35, 619–627.
|
[97] |
Hu, S.P.; Chang, J.L.; Ruan, H.F.; Zhi, W.L.; Wang, X.B.; Zhao, F.L.; Ma, X.P.; Sun, X.Y.; Liang, Q.Q.; Xu, H.; Wang, Y.J.; Yang, Y.P. Cantharidin inhibits osteosarcoma proliferation and metastasis by directly targeting miR-214-3p/DKK3 axis to inactivate β-catenin nuclear translocation and LEF1 translation. Int. J. Biol. Sci. 2021, 17, 2504–2522.
|
[98] |
Zhu, M.; Shi, X.P.; Gong, Z.Y.; Su, Q.; Yu, R.Z.; Wang, B.; Yang, T.F.; Dai, B.L.; Zhan, Y.Z.; Zhang, D.D.; Zhang, Y.M. Cantharidin treatment inhibits hepatocellular carcinoma development by regulating the JAK2/STAT3 and PI3K/Akt pathways in an EphB4-dependent manner. Pharmacol. Res. 2020, 158, 104868.
|
[99] |
Song, M.Y.; Wang, X.F.; Luo, Y.J.; Liu, Z.L.; Tan, W.; Ye, P.C.; Fu, Z.M.; Lu, F.; Xiang, W.P.; Tang, L.H.; Yao, L.; Nie, Y.Q.; Xiao, J.W. Cantharidin suppresses gastric cancer cell migration/invasion by inhibiting the PI3K/Akt signaling pathway via CCAT1. Chem. Biol. Interact. 2020, 317, 108939.
|
[100] |
Han, L.; Sun, Y.J.; Pan, Y.F.; Ding, H.; Chen, X.; Zhang, X. Cantharidin combined with chemotherapy for Chinese patients with metastatic colorectal cancer. Asian Pac. J. Cancer Prev. 2015, 15, 10977–10979.
|
[101] |
Sui, T.T.; Tian, L.C.; Zhang, X.; Ma, Q.X.; Feng, Y.Y.; Hu, X.W.; Luo, G.B.; Ma, Z.T. Synergistic Effect of Cantharidin and Pemetrexed on HCT116 Colorectal Cancer Cells. Chin. J. Exper. Tradit. Med. Form. 2018, 24, 43–48.
|
[102] |
Hu, B.; An, H.M.; Zheng, J.L.;Yan, X.; Huang, X.W.; Teng-Long-Bu-Zhong-Tang decoction promotes cell senescence of human colon carcinoma RKO cells and its possible mechanism. Tumor. 2016, 36, 1307–1311.
|
[103] |
Hu, B.; Wei, M.M.; Wang, S.S.; Zheng, J.L.; Chen, L.; Peng, X.A.; Chen, J.F.; An, H.M. Herbal medicine Teng-long-bu-Zhong-Tang inhibits the growth of human RKO colorectal cancer by regulating apoptosis, senescence, and angiogenesis. World J. Tradit. Chin. Med. 2022, 8, 110.
|
[104] |
Hu, B. Senescence-inducing effects of Chinese herbal medicine Tenglong Buzhong Decoction on human colon carcinoma LS-174-T cells and the mechanism. J. Chin. Integr. Med. 2010, 8, 1048–1052.
|
[105] |
Wang, S.; Xing, Y.; Wang, R.; Jin, Z. Jianpi Huayu Decoction suppresses cellular senescence in colorectal cancer via p53-p21-Rb pathway: Network pharmacology and in vivo validation. J. Ethnopharmacol. 2024, 3, 117347.
|
[1] | Gong Fang, Wenxi Li. Advances in the treatment of hyperuricemia with traditional Chinese medicine [J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(5): 381-395. |
[2] | Junchen Ge, Debing Xiang. Advances of nano-targeted drug delivery systems in traditional Chinese medicine anticancer therapy [J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(4): 285-304. |
[3] | Yonghao Sang, Jie Yun, Lijuan Dai, Liqun Song. Chinese herbal enema therapy for the treatment of chronic kidney disease [J]. Journal of Chinese Pharmaceutical Sciences, 2024, 33(4): 305-315. |
[4] | Mengyao Wu, Lu Liu, Peng Zhang, Lele Zhang, Yun Gong, Xiuwei Yang. Exploring the mechanism of Buxue Yimu Pills on postpartum abdominal pain through network pharmacology and experimental validation [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 691-703. |
[5] | Ping Shang, Lin Liu, Yi Fang. Investigating the mechanism of action of Gui Zhi Fu Ling Wan in the treatment of endometriosis based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 704-719. |
[6] | Gedi Zhang, Gengxin Liu, Ziyou Yan. Therapeutic efficacy evaluation and mechanism of action based on meta-analysis and network pharmacology of Li Chong Decoction (Bolus) for cancer treatment [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 720-735. |
[7] | Hui Wu, Gang Ning, Bonan Li, Xing Zhou. Effect of Nrf2 on the testicular microenvironment and its research progress in male diseases [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(7): 513-526. |
[8] | Bo Fan, Xiao Yang, Shuang Hu. Vortex-assisted switchable solvent liquid-phase microextraction for preconcentration of cinnamic acid derivatives in traditional Chinese medicine [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(7): 551-559. |
[9] | Yonghui Ge, Ling Wang, Su Xu, Tianli Jiang, Jinhua Wang. Direct identification of volatile compounds in the artificially cultivated and wild Chinese medicinal materials (Semiliquidambar cathayesis) by headspace-gas chromatography-ion mobility spectrometry [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(5): 392-405. |
[10] | Ning Ding, Tao Zhang, Ji Luo, Haochen Liu, Yu Deng, Yongheng He. Study on the mechanism of Baishao Qiwu Decoction in the treatment of colorectal cancer based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(1): 17-31. |
[11] | Jie Yang, Haiyang Meng, Duolu Li, Yanying Wang, Zhaosen Gu, Xiaojian Zhang. Drug-related problems among inpatients of integrated traditional Chinese and western medicine department in China [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(4): 279-288. |
[12] | Yumiti Taxifulati, Yue Zhou, Sheng Han, Kexin Du, Yaoyao Yang, Lin Hu, Bo Zheng, Xiaodong Guan, Haishaerjiang Wushouer, Luwen Shi. Trends of consumption and expenditure of antibacterial traditional Chinese medicine in secondary and tertiary hospitals in China: an analysis of pharmaceutical sales data, 2011–2015 [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(4): 298-307. |
[13] | Kunpeng Yao, Daoping Zhang, Qili Liu, Huzhi Cai, Qingyang Chen, Xinyu Chen. Integrating bioinformatics to identify and analyze feature genes of acute myocardial infarction and potential Chinese medicine prediction [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(12): 912-927. |
[14] | Tao Gao, Lei Liu, Yan Wu, Quan Du. Preclinical safety evaluation of WangShiBaoChiWan [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(1): 31-46. |
[15] | Mengqiu Lu, Haizhen Liang, Pengfei Tu, Yong Jiang. Pharmacodynamic comparison of two different source plants of Murrayae Folium et Cacumen [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(1): 49-57. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||