Journal of Chinese Pharmaceutical Sciences ›› 2023, Vol. 32 ›› Issue (7): 513-526.DOI: 10.5246/jcps.2023.07.043
• Review • Next Articles
Hui Wu1, Gang Ning1, Bonan Li2, Xing Zhou1,*()
Received:
2023-02-16
Revised:
2023-03-11
Accepted:
2023-04-01
Online:
2023-07-31
Published:
2023-07-31
Contact:
Xing Zhou
Supporting:
Hui Wu, Gang Ning, Bonan Li, Xing Zhou. Effect of Nrf2 on the testicular microenvironment and its research progress in male diseases[J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(7): 513-526.
[1] |
Venkataraman, K.; Khurana, S.; Tai, T.C. Oxidative stress in aging: matters of the heart and mind. Int. J. Mol. Sci. 2013, 14, 17897–17925.
|
[2] |
Klaunig, J.E.; Wang, Z.M.; Pu, X.Z.; Zhou, S.Y. Oxidative stress and oxidative damage in chemical carcinogenesis. Toxicol. Appl. Pharmacol. 2011, 254, 86–99.
|
[3] |
Prasad, S.; Gupta, S.C.; Tyagi, A.K. Reactive oxygen species (ROS) and cancer: role of antioxidative nutraceuticals. Cancer Lett. 2017, 387, 95–105.
|
[4] |
Jelic, M.D.; Mandic, A.D.; Maricic, S.M.; Srdjenovic, B.U. Oxidative stress and its role in cancer. J. Cancer Res. Ther. 2021, 17, 22–28.
|
[5] |
Xing, S.L.; Zhang, L.X.; Lin, H.L.; Mao, Z.F.; Bao, K.T.; Hao, P.; Pei, Z.; Li, J.; Hu, Z.L. Lactose induced redox-dependent senescence and activated Nrf2 pathway. Int. J. Clin. Exp. Pathol. 2019, 12, 2034–2045.
|
[6] |
Wei, W.; Ma, N.; Fan, X.Y.; Yu, Q.L.; Ci, X.X. The role of Nrf2 in acute kidney injury: novel molecular mechanisms and therapeutic approaches. Free Radic. Biol. Med. 2020, 158, 1–12.
|
[7] |
Schmidlin, C.J.; Dodson, M.B.; Zhang, D.D. Filtering through the role of NRF2 in kidney disease. Arch. Pharm. Res. 2020, 43, 361–369.
|
[8] |
Khatri, N.; Thakur, M.; Pareek, V.; Kumar, S.; Sharma, S.; Datusalia, A.K. Oxidative stress: major threat in traumatic brain injury. CNS Neurol. Disord. Drug Targets. 2018, 17, 689–695.
|
[9] |
Kimball, J.S.; Johnson, J.P.; Carlson, D.A. Oxidative stress and osteoporosis. J. Bone Jt. Surg. 2021, 103, 1451–1461.
|
[10] |
van der Pol, A.; van Gilst, W.H.; Voors, A.A.; van der Meer, P. Treating oxidative stress in heart failure: past, present and future. Eur. J. Heart Fail. 2019, 21, 425–435.
|
[11] |
Hybertson, B.M.; Gao, B.F.; Bose, S.K.; McCord, J.M. Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation. Mol. Aspects Med. 2011, 32, 234–246.
|
[12] |
Chen, Q.M.; Maltagliati, A.J. Nrf2 at the heart of oxidative stress and cardiac protection. Physiol. Genomics. 2018, 50, 77–97.
|
[13] |
Zou, Y.P.; Luo, X.; Feng, Y.; Fang, S.H.; Tian, J.T.; Yu, B.; Li, J. Luteolin prevents THP-1 macrophage pyroptosis by suppressing ROS production via Nrf2 activation. Chem. Biol. Interact. 2021, 345, 109573.
|
[14] |
Xue, E.X.; Lin, J.P.; Zhang, Y.; Sheng, S.R.; Liu, H.X.; Zhou, Y.L.; Xu, H. Pterostilbene inhibits inflammation and ROS production in chondrocytes by activating Nrf2 pathway. Oncotarget. 2017, 8, 41988–42000.
|
[15] |
Wu, X.; Zhou, X.L.; Lai, S.Q.; Liu, J.C.; Qi, J.W. Curcumin activates Nrf2/HO-1 signaling to relieve diabetic cardiomyopathy injury by reducing ROS in vitro and in vivo. FASEB J. 2022, 36, e22505.
|
[16] |
Ding, X.Q.; Jian, T.; Wu, Y.X.; Zuo, Y.Y.; Li, J.W.; Lv, H.; Ma, L.; Ren, B.R.; Zhao, L.; Li, W.L.; Chen, J. Ellagic acid ameliorates oxidative stress and insulin resistance in high glucose-treated HepG2 cells via miR-223/keap1-Nrf2 pathway. Biomed. Pharmacother. 2019, 110, 85–94.
|
[17] |
Li, D.F.; Zhao, H.Y.; Cui, Z.K.; Tian, G.Y. The role of Nrf2 in hearing loss. Front. Pharmacol. 2021, 12, 620921.
|
[18] |
Baumel-Alterzon, S.; Scott, D.K. Regulation of Pdx1 by oxidative stress and Nrf2 in pancreatic beta-cells. Front. Endocrinol. 2022, 13, 1011187.
|
[19] |
Bae, W.J.; Ha, U.S.; Choi, J.B.; Kim, K.S.; Kim, S.J.; Cho, H.J.; Hong, S.H.; Lee, J.Y.; Wang, Z.P.; Hwang, S.Y.; Kim, S.W. Protective effect of decursin extracted from angelica gigas in male infertility via Nrf2/HO-1 signaling pathway. Oxid. Med. Cell Longev. 2016, 2016, 5901098.
|
[20] |
Hai, Y.N.; Yuan, Q.Q.; Sun, M.; Niu, M.H.; Guo, Y.; He, Z.P. The regulation of testicular microenvironment on spermatogenesis and its abnormalities. Chin. Bull. Life Sci. 2017, 29, 52–54.
|
[21] |
Lu, M.X.; Mu, Y.; Liu, Y. Triphenyltin disrupts the testicular microenvironment and reduces sperm quality in adult male rats. Chemosphere 2022, 301, 134726.
|
[22] |
Guvvala, P.R.; Sellappan, S.; Parameswaraiah, R.J. Impact of arsenic (V) on testicular oxidative stress and sperm functional attributes in Swiss albino mice. Environ. Sci. Pollut. Res. Int. 2016, 23, 18200–18210.
|
[23] |
Li, C.C.; Zou, C.; Yan, H.N.; Li, Z.Q.; Li, Y.; Pan, P.P.; Ma, F.F.; Yu, Y.G.; Wang, Y.Y.; Wen, Z.N.; Ge, R.S. Perfluorotridecanoic acid inhibits fetal Leydig cell differentiation after in utero exposure in rats via increasing oxidative stress and autophagy. Environ. Toxicol. 2021, 36, 1206–1216.
|
[24] |
Yan, H.N.; Li, C.C.; Zou, C.; Xin, X.; Li, X.H.; Li, H.T.; Li, Y.; Li, Z.Q.; Wang, Y.Y.; Chen, H.L.; Ge, R.S. Perfluoroundecanoic acid inhibits Leydig cell development in pubertal male rats via inducing oxidative stress and autophagy. Toxicol. Appl. Pharmacol. 2021, 415, 115440.
|
[25] |
Tang, Y.B.; Ying, Y.F.; Zou, C.; Yan, H.N.; Wang, Y.Y.; Li, H.T.; Li, X.H.; Xu, Z.Y.; Lv, J.Q.; Ge, R.S. Leydig cell function in adult male rats is disrupted by perfluorotetradecanoic acid through increasing oxidative stress and apoptosis. Environ. Toxicol. 2022, 37, 1790–1802.
|
[26] |
Orta Yilmaz, B.; Aydin, Y. Disruption of Leydig cell steroidogenic function by sodium arsenite and/or sodium fluoride. Theriogenology. 2022, 193, 146–156.
|
[27] |
Zhang, Y.F.; Yang, J.Y.; Li, Y.K.; Zhou, W. Toxicity and oxidative stress induced by T-2 toxin in cultured mouse Leydig cells. Toxicol. Mech. Methods. 2017, 27, 100–106.
|
[28] |
Yang, J.Y.; Du, J.J.; Zhang, Y.F.; Li, Y.X. Vitamin E and selenium partially prevent cytotoxicity, oxidative stress and DNA damage induced by T-2 toxin in bovine Leydig cells. Theriogenology. 2022, 189, 255–261.
|
[29] |
Yang, X.; Liu, P.L.; Zhang, X.L.; Zhang, J.; Cui, Y.L.; Song, M.; Li, Y.F. T-2 toxin causes dysfunction of Sertoli cells by inducing oxidative stress. Ecotoxicol. Environ. Saf. 2021, 225, 112702.
|
[30] |
Yang, Y.; Huang, H.; Ba, Y.; Cheng, X.M.; Cui, L.X. Effect of oxidative stress on fluoride-induced apoptosis in primary cultured Sertoli cells of rats. Int. J. Environ. Health Res. 2015, 25, 1–9.
|
[31] |
Liu, B.; Shen, L.J.; Zhao, T.X.; Sun, M.; Wang, J.K.; Long, C.L.; He, D.W.; Lin, T.; Wu, S.D.; Wei, G.H. Automobile exhaust-derived PM2.5 induces blood-testis barrier damage through ROS-MAPK-Nrf2 pathway in Sertoli cells of rats. Ecotoxicol. Environ. Saf. 2020, 189, 110053.
|
[32] |
Wang, C.; Liu, X.; Shu, Z.; Yin, J.; Xiao, M.C.; Ai, Y.Y.; Zhao, P.; Luo, Z.; Liu, B. Exposure to automobile exhaust-derived PM2.5 induces spermatogenesis dysfunction by damaging UPRmt of prepubertal rats. Ecotoxicol. Environ. Saf. 2022, 245, 114087.
|
[33] |
Chen, S.; Yang, S.H.; Wang, M.Y.; Chen, J.; Huang, S.; Wei, Z.; Cheng, Z.Y.; Wang, H.L.; Long, M.; Li, P. Curcumin inhibits zearalenone-induced apoptosis and oxidative stress in Leydig cells via modulation of the PTEN/Nrf2/Bip signaling pathway. Food Chem. Toxicol. 2020, 141, 111385.
|
[34] |
Zhao, Y.; Li, M.Z.; Shen, Y.; Lin, J.; Wang, H.R.; Talukder, M.; Li, J.L. Lycopene prevents DEHP-induced leydig cell damage with the Nrf2 antioxidant signaling pathway in mice. J. Agric. Food Chem. 2020, 68, 2031–2040.
|
[35] |
Zhang, J.Q.; Fang, Y.; Tang, D.D.; Xu, X.Y.; Zhu, X.Q.; Wu, S.S.; Yu, H.; Cheng, H.R.; Luo, T.; Shen, Q.S.; Gao, Y.; Ma, C.; Liu, Y.J.; Wei, Z.L.; Chen, X.Y.; Tao, F.B.; He, X.J.; Cao, Y.X. Activation of MT1/MT2 to protect testes and leydig cells against cisplatin-induced oxidative stress through the SIRT1/Nrf2 signaling pathway. Cells. 2022, 11, 1690.
|
[36] |
Dong, Y.; Zhao, J.; Zhu, Q.Y.; Liu, H.Y.; Wang, J.; Lu, W.F. Melatonin inhibits the apoptosis of rooster Leydig cells by suppressing oxidative stress via AKT-Nrf2 pathway activation. Free Radic. Biol. Med. 2020, 160, 1–12.
|
[37] |
Shi, L.; Wang, X.L.; Duan, Y.L.; Li, K.X.; Ren, Y.S. Antagonistic effects of selenium on lead-induced oxidative stress and apoptosis of Leydig cells in sheep. Theriogenology. 2022, 185, 43–49.
|
[38] |
Wang, Y.; Guo, S.H.; Shang, X.J.; Yu, L.S.; Zhu, J.W.; Zhao, A.; Zhou, Y.F.; An, G.H.; Zhang, Q.; Ma, B. Triptolide induces Sertoli cell apoptosis in mice via ROS/JNK-dependent activation of the mitochondrial pathway and inhibition of Nrf2-mediated antioxidant response. Acta Pharmacol. Sin. 2018, 39, 311–327.
|
[39] |
He, C.; Sun, J.; Yang, D.H.; He, W.L.; Wang, J.Y.; Qin, D.Z.; Zhang, H.M.; Cai, H.; Liu, Y.D.; Li, N.; Hua, J.L.; Peng, S. Nrf2 activation mediates the protection of mouse Sertoli Cells damage under acute heat stress conditions. Theriogenology. 2022, 177, 183–194.
|
[40] |
Yang, S.H.; Yu, L.H.; Li, L.; Guo, Y.; Zhang, Y.; Long, M.; Li, P.; He, J.B. Protective mechanism of sulforaphane on cadmium-induced Sertoli cell injury in mice testis via Nrf2/ARE signaling pathway. Molecules. 2018, 23, 1774.
|
[41] |
Long, M.; Yang, S.H.; Shi, W.; Li, P.; Guo, Y.; Guo, J.Y.; He, J.B.; Zhang, Y. Protective effect of proanthocyanidin on mice Sertoli cell apoptosis induced by zearalenone via the Nrf2/ARE signalling pathway. Environ. Sci. Pollut. Res. Int. 2017, 24, 26724–26733.
|
[42] |
Cao, L.; Zhao, J.; Ma, L.; Chen, J.W.; Xu, J.R.; Rahman, S.U.; Feng, S.B.; Li, Y.; Wu, J.J.; Wang, X.C. Lycopene attenuates zearalenone-induced oxidative damage of piglet Sertoli cells through the nuclear factor erythroid-2 related factor 2 signaling pathway. Ecotoxicol. Environ. Saf. 2021, 225, 112737.
|
[43] |
Xi, H.M.; Hu, Z.T.; Han, S.Q.; Liu, X.Y.; Wang, L.Q.; Hu, J.H. FSH-inhibited autophagy protects against oxidative stress in goat Sertoli cells through p62-Nrf2 pathway. Theriogenology. 2023, 195, 103–114.
|
[44] |
Chung, J.Y.; Chen, H.L.; Zirkin, B. Sirt1 and Nrf2: regulation of Leydig cell oxidant/antioxidant intracellular environment and steroid formation. Biol. Reprod. 2021, 105, 1307–1316.
|
[45] |
Zeng, T.; Yao, T.W.; Li, X.Z.; Tang, C.L. Electroacupuncture intervention increases testosterone level of aged rats by activating ERK/Nrf2/HO-1 signaling of Leydig cells. Acupunct. Res. 2019.
|
[46] |
Chen, H.L.; Jin, S.Y.; Guo, J.J.; Kombairaju, P.; Biswal, S.; Zirkin, B.R. Knockout of the transcription factor Nrf2: effects on testosterone production by aging mouse Leydig cells. Mol. Cell Endocrinol. 2015, 409, 113–120.
|
[47] |
Sinha, K.; Das, J.; Pal, P.B.; Sil, P.C. Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch. Toxicol. 2013, 87, 1157–1180.
|
[48] |
Ryoo, I.G.; Kwak, M.K. Regulatory crosstalk between the oxidative stress-related transcription factor Nfe2l2/Nrf2 and mitochondria. Toxicol. Appl. Pharmacol. 2018, 359, 24–33.
|
[49] |
Kasai, S.Y.; Shimizu, S.; Tatara, Y.; Mimura, J.; Itoh, K. Regulation of Nrf2 by mitochondrial reactive oxygen species in physiology and pathology. Biomolecules. 2020, 10, 320.
|
[50] |
Kovac, S.; Angelova, P.R.; Holmström, K.M.; Zhang, Y.; Dinkova-Kostova, A.T.; Abramov, A.Y. Nrf2 regulates ROS production by mitochondria and NADPH oxidase. Biochim. Biophys. Acta. 2015, 1850, 794–801.
|
[51] |
Yu, S.T.; Han, B.; Xing, X.; Li, Y.X.; Zhao, D.Q.; Liu, M.C.; Wang, S.M. A protein from Dioscorea polystachya (chinese yam) improves hydrocortisone-induced testicular dysfunction by alleviating leydig cell injury via upregulation of the Nrf2 pathway. Oxid. Med. Cell Longev. 2021, 2021, 3575016.
|
[52] |
Zhao, H.X.; You, X.; Chen, Q.; Yang, S.Q.; Ma, Q.Y.; He, Y.M.; Liu, C.Q.; Dun, Y.Y.; Wu, J.; Zhang, C.C.; Yuan, D. Icariin improves age-related testicular dysfunction by alleviating Sertoli cell injury via upregulation of the ER α/Nrf2-signaling pathway. Front. Pharmacol. 2020, 11, 677.
|
[53] |
Mohamed, M.Z.; Morsy, M.A.; Mohamed, H.H.; Hafez, H.M. Paeonol protects against testicular ischaemia-reperfusion injury in rats through inhibition of oxidative stress and inflammation. Andrologia. 2020, 52, e13599.
|
[54] |
Qin, Z.Q.; Zhu, K.; Xue, J.X.; Cao, P.; Xu, L.W.; Xu, Z.; Liang, K.; Zhu, J.G.; Jia, R.P. Zinc-induced protective effect for testicular ischemia-reperfusion injury by promoting antioxidation via microRNA-101-3p/Nrf2 pathway. Aging. 2019, 11, 9295–9309.
|
[55] |
Samir, S.M.; Elalfy, M.; Nashar, E.M.E.; Alghamdi, M.A.; Hamza, E.; Serria, M.S.; Elhadidy, M.G. Cardamonin exerts a protective effect against autophagy and apoptosis in the testicles of diabetic male rats through the expression of Nrf2 via p62-mediated Keap-1 degradation. Korean J. Physiol. Pharmacol. 2021, 25, 341–354.
|
[56] |
Abdel-Wahab, B.A.; Alkahtani, S.A.; Elagab, E.A.M. Tadalafil alleviates cisplatin-induced reproductive toxicity through the activation of the Nrf2/HO-1 pathway and the inhibition of oxidative stress and apoptosis in male rats. Reprod. Toxicol. 2020, 96, 165–174.
|
[57] |
Sarawi, W.S.; Alhusaini, A.M.; Fadda, L.M.; Alomar, H.A.; Albaker, A.B.; Alghibiwi, H.K.; Aljrboa, A.S.; Alotaibi, A.M.; Hasan, I.H.; Mahmoud, A.M. Nano-curcumin prevents copper reproductive toxicity by attenuating oxidative stress and inflammation and improving Nrf2/HO-1 signaling and pituitary-gonadal axis in male rats. Toxics. 2022, 10, 356.
|
[58] |
Yang, S.H.; He, J.B.; Yu, L.H.; Li, L.; Long, M.; Liu, M.D.; Li, P. Protective role of curcumin in cadmium-induced testicular injury in mice by attenuating oxidative stress via Nrf2/ARE pathway. Environ. Sci. Pollut. Res. Int. 2019, 26, 34575–34583.
|
[59] |
Jiang, X.P.; Tang, J.Y.; Xu, Z.; Han, P.; Qin, Z.Q.; Yang, C.D.; Wang, S.Q.; Tang, M.; Wang, W.; Qin, C.; Xu, Y.; Shen, B.X.; Zhou, W.M.; Zhang, W. Sulforaphane attenuates di-N-butylphthalate-induced reproductive damage in pubertal mice: involvement of the Nrf2-antioxidant system. Environ. Toxicol. 2017, 32, 1908–1917.
|
[60] |
Nasiri, K.; Akbari, A.; Nimrouzi, M.; Ruyvaran, M.; Mohamadian, A. Safflower seed oil improves steroidogenesis and spermatogenesis in rats with type II diabetes mellitus by modulating the genes expression involved in steroidogenesis, inflammation and oxidative stress. J. Ethnopharmacol. 2021, 275, 114139.
|
[61] |
Rao, M.; Zhao, X.L.; Yang, J.; Hu, S.F.; Lei, H.; Xia, W.; Zhu, C.H. Effect of transient scrotal hyperthermia on sperm parameters, seminal plasma biochemical markers, and oxidative stress in men. Asian J. Androl. 2015, 17, 668–675.
|
[62] |
Badr, G.; Abdel-Tawab, H.S.; Ramadan, N.K.; Ahmed, S.F.; Mahmoud, M.H. Protective effects of camel whey protein against scrotal heat-mediated damage and infertility in the mouse testis through YAP/Nrf2 and PPAR-gamma signaling pathways. Mol. Reprod. Dev. 2018, 85, 505–518.
|
[63] |
As, P.; Nn, T.; Ka, O.; Jc, H. Benefits and consequences of testosterone replacement therapy: a review. Eur. Endocrinol. 2013, 9, 59–64.
|
[64] |
Roychoudhury, S.; Chakraborty, S.; Choudhury, A.P.; Das, A.; Jha, N.K.; Slama, P.; Nath, M.; Massanyi, P.; Ruokolainen, J.; Kesari, K.K. Environmental factors-induced oxidative stress: hormonal and molecular pathway disruptions in hypogonadism and erectile dysfunction. Antioxidants. 2021, 10, 837.
|
[65] |
Jeong, H.C.; Jeon, S.H.; Zhu, G.Q.; Bashraheel, F.; Choi, S.W.; Kim, S.J.; Bae, W.J.; Cho, H.J.; Ha, U.S.; Hong, S.H.; Lee, J.Y.; Hong, S.B.; Kim, S.W. Lycium chinense Mill improves hypogonadism via anti-oxidative stress and anti-apoptotic effect in old aged rat model. Aging Male. 2020, 23, 287–296.
|
[66] |
Liu, Y.L.; Liu, Y.X.; Wang, J.; Huang, F.J.; Du, P.J.; Wu, L.N.; Guo, F.; Song, Y.; Qin, G.J. LncRNA FENDRR promotes apoptosis of Leydig cells in late-onset hypogonadism by facilitating the degradation of Nrf2. Cell Tissue Res. 2021, 386, 379–389.
|
[67] |
Bae, W.J.; Zhu, G.Q.; Choi, S.W.; Jeong, H.C.; Bashraheel, F.; Kim, K.S.; Kim, S.J.; Cho, H.J.; Ha, U.S.; Hong, S.H.; Lee, J.Y.; Oh, H.A.; Koo, H.C.; Kim, D.R.; Hwang, S.Y.; Kim, S.W. Antioxidant and antifibrotic effect of a herbal formulation in vitro and in the experimental andropause via Nrf2/HO-1 signaling pathway. Oxid. Med. Cell Longev. 2017, 2017, 6024839.
|
[68] |
Bisht, S.; Faiq, M.; Tolahunase, M.; Dada, R.M. Oxidative stress and male infertility. Nat. Rev. Urol. 2017, 14, 470–485.
|
[69] |
Aitken, R.J.; Smith, T.B.; Jobling, M.S.; Baker, M.A.; De Iuliis, G.N. Oxidative stress and male reproductive health. Asian J. Androl. 2014, 16, 31–38.
|
[70] |
Han, P.; Wang, X.; Zhou, T.; Cheng, J.; Wang, C.; Sun, F.; Zhao, X. Inhibition of ferroptosis attenuates oligospermia in male Nrf2 knockout mice. Free Radic Biol. Med. 2022, 193, 421–429.
|
[71] |
Chen, K.; Mai, Z.X.; Zhou, Y.L.; Gao, X.C.; Yu, B.L. Low NRF2 mRNA expression in spermatozoa from men with low sperm motility. Tohoku J. Exp. Med. 2012, 228, 259–266.
|
[72] |
Jannatifar, R.; Parivar, K.; Hayati Roodbari, N.; Nasr-Esfahani, M.H. The effect of N-acetyl-cysteine on NRF2 antioxidant gene expression in asthenoteratozoospermia men: a clinical trial study. Int. J. Fertil. Steril. 2020, 14, 171–175.
|
[73] |
Kang, J.S.; Zhao, X.Y.; Lee, J.H.; Lee, J.S.; Keum, Y.S. Ethanol extract of Chaenomeles sinensis inhibits the development of benign prostatic hyperplasia by exhibiting anti-oxidant and anti-inflammatory effects. J. Cancer Prev. 2022, 27, 42–49.
|
[74] |
Eid, B.G.; Abdel-Naim, A.B. Piceatannol attenuates testosterone-induced benign prostatic hyperplasia in rats by modulation of Nrf2/HO-1/NFκB axis. Front. Pharmacol. 2020, 11, 614897.
|
[75] |
Fu, W.; Chen, S.C.; Zhang, Z.Z.; Chen, Y.W.; You, X.J.; Li, Q.X. Quercetin in Tonglong Qibi Decoction ameliorates testosterone-induced benign prostatic hyperplasia in rats by regulating Nrf2 signalling pathways and oxidative stress. Andrologia. 2022, 54, e14502.
|
[76] |
Kalinina, E.V.; Gavriliuk, L.A.; Pokrovsky, V.S. Oxidative stress and redox-dependent signaling in prostate cancer. Biochem. Mosc. 2022, 87, 413–424.
|
[77] |
Yang, G.; Yin, H.B.; Lin, F.; Gao, S.; Zhan, K.; Tong, H.; Tang, X.Y.; Pan, Q.; Gou, X. Long noncoding RNA TUG1 regulates prostate cancer cell proliferation, invasion and migration via the Nrf2 signaling axis. Pathol. Res. Pract. 2020, 216, 152851.
|
[78] |
Chen, J.Y.; Wang, F.B.; Xu, H.; Xu, L.F.; Chen, D.; Liu, W.H.; Mu, X.; Wen, Y.Q. High glucose promotes prostate cancer cells apoptosis via Nrf2/ARE signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 192–200.
|
[79] |
Yu, J.Y.; Yang, Y.; Li, S.; Meng, P. Salinomycin triggers prostate cancer cell apoptosis by inducing oxidative and endoplasmic reticulum stress via suppressing Nrf2 signaling. Exp. Ther. Med. 2021, 22, 946.
|
[80] |
Mancini, M.C.S.; Morelli, A.P.; Severino, M.B.; Pavan, I.C.B.; Zambalde, É.P.; Góis, M.M.; da Silva, L.G.S.; Quintero-Ruiz, N.; Romeiro, C.F.; dos Santos, D.F.G.; Bezerra, R.M.N.; Simabuco, F.M. Knockout of NRF2 triggers prostate cancer cells death through ROS modulation and sensitizes to cisplatin. J. Cell Biochem. 2022, 123, 2079–2092.
|
[81] |
Zhang, Y.; Xin, Z.X.; Dong, B.J.; Xue, W. Combination of the NRF2 inhibitor and autophagy inhibitor significantly inhibited tumorigenicity of castration-resistant prostate cancer. Comput. Math. Methods Med. 2022, 2022, 4182401.
|
[82] |
Buttari, B.; Arese, M.; Oberley-Deegan, R.E.; Saso, L.; Chatterjee, A. NRF2: a crucial regulator for mitochondrial metabolic shift and prostate cancer progression. Front. Physiol. 2022, 13, 989793.
|
[83] |
Paulis, G. Inflammatory mechanisms and oxidative stress in prostatitis: the possible role of antioxidant therapy. Res. Rep. Urol. 2018, 10, 75–87.
|
[84] |
Ihsan, A.U.; Khan, F.U.; Khongorzul, P.; Ali Ahmad, K.; Naveed, M.; Yasmeen, S.; Cao, Y.F.; Taleb, A.; Maiti, R.; Akhter, F.; Liao, X.Q.; Li, X.; Cheng, Y.J.; Khan, H.U.; Alam, K.; Zhou, X.H. Role of oxidative stress in pathology of chronic prostatitis/chronic pelvic pain syndrome and male infertility and antioxidants function in ameliorating oxidative stress. Biomed. Pharmacother. 2018, 106, 714–723.
|
[85] |
Wang, W.; Chen, R.Z.; Wang, J.Y. Procyanidin B2 ameliorates carrageenan-induced chronic nonbacterial prostatitis in rats via anti-inflammatory and activation of the Nrf2 pathway. Biochem. Biophys. Res. Commun. 2017, 493, 794–799.
|
[86] |
Wang, L.L.; Huang, Y.H.; Yan, C.Y.; Wei, X.D.; Hou, J.Q.; Pu, J.X.; Lv, J.X. N-acetylcysteine ameliorates prostatitis via miR-141 regulating Keap1/Nrf2 signaling. Inflammation. 2016, 39, 938–947.
|
[87] |
Song, X.Q.; Chen, G.D.; Li, C.X.; Yang, C.Y.; Deng, Y. Tadalafil alleviates LPS-induced inflammation and oxidative stress of RWPE-1 cell by regulating the akt/Nrf2 signaling pathway. Inflammation. 2021, 44, 890–898.
|
[88] |
Hu, L.L.; Zhang, K.Q.; Tian, T.; Zhang, H.; Fu, Q. Probucol improves erectile function via Activation of Nrf2 and coordinates the HO-1/DDAH/PPAR-γ/eNOS pathways in streptozotocin-induced diabetic rats. Biochem. Biophys. Res. Commun. 2018, 507, 9–14.
|
[89] |
Wang, H.R.; Zhang, K.Q.; Ruan, Z.; Sun, D.Q.; Fu, Q. Probucol enhances the therapeutic efficiency of mesenchymal stem cells in the treatment of erectile dysfunction in diabetic rats by prolonging their survival time via Nrf2 pathway. Stem Cell Res. Ther. 2020, 11, 302.
|
[90] |
Zhou, X.; Wang, S.Q.; Zhou, R.H.; Zhang, T.T.; Wang, Y.C.; Zhang, Q.J.; Cong, R.; Ji, C.J.; Luan, J.C.; Yao, L.Y.; Zhou, X.; Song, N.H. Erectile dysfunction in hypospadiac male adult rats induced by maternal exposure to di-n-butyl phthalate. Toxicology. 2022, 475, 153227.
|
[91] |
Ma, Z.; Wang, W.Z.; Pan, C.; Fan, C.Q.; Li, Y.; Wang, W.J.; Lan, T.; Gong, F.X.; Zhao, C.B.; Zhao, Z.C.; Yu, S.Y.; Yuan, M.Z. N-acetylcysteine improves diabetic associated erectile dysfunction in streptozotocin-induced diabetic mice by inhibiting oxidative stress. J. Cell Mol. Med. 2022, 26, 3527–3537.
|
[92] |
Erfani Majd, N.; Sadeghi, N.; Tavalaee, M.; Tabandeh, M.R.; Nasr-Esfahani, M.H. Evaluation of oxidative stress in testis and sperm of rat following induced varicocele. Urol. J. 2019, 16, 300–306.
|
[93] |
Finelli, R.; Leisegang, K.; Kandil, H.; Agarwal, A. Oxidative stress: a comprehensive review of biochemical, molecular, and genetic aspects in the pathogenesis and management of varicocele. World J. Mens Health. 2022, 40, 87–103.
|
[94] |
Wang, Y.; Chen, F.; Liang, M.; Chen, S.Z.; Zhu, Y.F.; Zou, Z.C.; Shi, B.K. Grape seed proanthocyanidin extract attenuates varicocele-induced testicular oxidative injury in rats by activating the Nrf2-antioxidant system. Mol. Med. Rep. 2018, 17, 1799–1806.
|
[95] |
Razi, M.; Tavalaee, M.; Sarrafzadeh-Rezaei, F.; Moazamian, A.; Gharagozloo, P.; Drevet, J.R.; Nasr-Eshafani, M.H. Varicocoele and oxidative stress: new perspectives from animal and human studies. Andrology. 2021, 9, 546–558.
|
[96] |
Agarwal, A.; Baskaran, S.; Panner Selvam, M.K.; Finelli, R.; Barbarosie, C.; Robert, K.A.; Iovine, C.; Master, K.; Henkel, R. Scientific landscape of oxidative stress in male reproductive research: a scientometric study. Free Radic. Biol. Med. 2020, 156, 36–44.
|
[97] |
Zhang, W.B.; Zheng, X.M.; Wang, X.H. Oxidative stress measured by thioredoxin reductase level as potential biomarker for prostate cancer. Am. J. Cancer Res. 2015, 5, 2788–2798.
|
[98] |
Rotimi, D.E.; Ojo, O.A.; Olaolu, T.D.; Adeyemi, O.S. Exploring Nrf2 as a therapeutic target in testicular dysfunction. Cell Tissue Res. 2022, 390, 23–33.
|
[1] | Zhaojing Wang, Qingxia Xu, Jing Xu, Wei Xu, Xiuwei Yang. Anti-oxidative and anti-neuroinflammatory effects of corylin in H2O2-induced HT22 cells and LPS-induced BV2 cells by activating Nrf2/HO-1 and inhibiting NF-κB pathways [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(2): 85-100. |
[2] | Jin Hu, Jiajun Xue, Juan Shen. Possible mechanism of benvitimod in atopic dermatitis and psoriasis [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(12): 901-911. |
[3] | Rong Li, Lihua Song, Jie Liu, Yang Bai, Yuming Du, Chunhua Lin, Xiuyuan Su, Zongxue Yu. Cardioprotective effect of Linagliptin on diabetic Wistar rats [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(4): 334-346. |
[4] | Liu He, Jiangli Xu, Limei Guo, Linling Que, Wencheng Yin, Baoshan Cao, Siwang Yu. Nrf2/ARE signaling protects against oxaliplatin-induced hepatotoxicity in mice [J]. Journal of Chinese Pharmaceutical Sciences, 2017, 26(10): 709-718. |
[5] | Francisco Fuentes, Yury Gomez, Ximena Paredes-Gonzalez, Avantika Barve, Sujit Nair, Siwang Yu, Constance Lay Lay Saw, Ah-Ng Tony Kong. Nrf2-mediated antioxidant and detoxifying enzyme induction by a combination of curcumin and sulforaphane [J]. Journal of Chinese Pharmaceutical Sciences, 2016, 25(8): 559-569. |
[6] | Qian Yang, Gang Chen, Yang Yang, Xueting Cai, Zhonghua Pang, Chunping Hu, Shuangquan Zhang, Peng Cao. Formononetin ameliorates DSS-induced ulcerative colitis in mice through induction of Nrf2 in colons [J]. Journal of Chinese Pharmaceutical Sciences, 2016, 25(3): 178-188. |
[7] | Simin Yang, Liyan Ji, Linling Que, Kui Wang, Siwang Yu. Metformin activates Nrf2 signaling and induces the expression of antioxidant genes in skeletal muscle and C2C12 myoblasts [J]. Journal of Chinese Pharmaceutical Sciences, 2014, 23(12): 837-843. |
[8] | Linling Que, Xinzhu Wang, Pengzhan Qian, Baoshan Cao, Kui Wang, Siwang Yu* . Upregulation of Nrf2-regulated gene expression by tBHQ alleviates cyclophosphamide-induced hematotoxicity in mice [J]. Journal of Chinese Pharmaceutical Sciences, 2014, 23(1): 39-45. |
[9] | Lin-Ling Que, Hui-Xia Wang, Bao-Shan Cao, Xiao-Da Yang, Kui Wang, Si-Wang Yu*. The regulation and functions of transcription factor Nrf2 in cancer chemoprevention and chemoresistance [J]. , 2011, 20(1): 5-19. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||