[1] |
Liu, Y.B.; Huang, Z.; Xu, Q.; Zhang, L.Y.; Liu, Q.; Xu, T.L. Portable electrochemical micro-workstation platform for simultaneous detection of multiple Alzheimer’s disease biomarkers. Mikrochim. Acta. 2022, 189, 91.
|
[2] |
Scheltens, P.; De, Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s disease. Lancet. 2021, 397, 1577–1590.
|
[3] |
GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health. 2022, 7, e105–e125.
|
[4] |
Gonzalez-Cano, S.I.; Flores, G.; Guevara, J.; Morales-Medina, J.C.; Treviño, S.; Diaz, A. Polyoxidovanadates a new therapeutic alternative for neurodegenerative and aging diseases. Neural Regen. Res. 2024, 19, 571–577.
|
[5] |
Serý, O.; Povová, J.; Míšek, I.; Pešák, L.; Janout, V. Molecular mechanisms of neuropathological changes in Alzheimer’s disease: a review. Folia Neuropathol. 2013, 51, 1–9.
|
[6] |
Sędzikowska, A.; Szablewski, L. Insulin and insulin resistance in Alzheimer’s disease. Int. J. Mol. Sci. 2021, 22, 9987.
|
[7] |
Liu, G.D.; Yang, C.; Wang, X.; Chen, X.; Wang, Y.J.; Le, W.D. Oxygen metabolism abnormality and Alzheimer’s disease: an update. Redox Biol. 2023, 68, 102955.
|
[8] |
Jagust, W. Imaging the evolution and pathophysiology of Alzheimer disease. Nat. Rev. Neurosci. 2018, 19, 687–700.
|
[9] |
Heneka, M.T.; O’Banion, M.K. Inflammatory processes in Alzheimer’s disease. J. Neuroimmunol. 2007, 184, 69–91.
|
[10] |
Chami, M. Calcium signalling in Alzheimer’s disease: from pathophysiological regulation to therapeutic approaches. Cells. 2021, 10, 140.
|
[11] |
Zhang, R.X.; Song, Y.R.; Su, X.F. Necroptosis and Alzheimer’s disease: pathogenic mechanisms and therapeutic opportunities. J. Alzheimers Dis. 2023, 94, S367–S386.
|
[12] |
Epremyan, K.K.; Goleva, T.N.; Zvyagilskaya, R.A. Effect of tau protein on mitochondrial functions. Biochemistry. 2022, 87, 689–701.
|
[13] |
Lazarov, O.; Hollands, C. Hippocampal neurogenesis: Learning to remember. Prog. Neurobiol. 2016, 138, 1–18.
|
[14] |
Igarashi, K.M. Entorhinal cortex dysfunction in Alzheimer’s disease. Trends Neurosci. 2023, 46, 124–136.
|
[15] |
Rao, Y.L.; Ganaraja, B.; Murlimanju, B.V.; Joy, T.; Krishnamurthy, A.; Agrawal, A. Hippocampus and its involvement in Alzheimer’s disease: a review. 3 Biotech. 2022, 12, 55.
|
[16] |
Awasthi, D.; Nagarkoti, S.; Sadaf, S.; Aggarwal, H.; Gupta, S.K.; Chandra, T.; Kumar, Y.; Kumar, S.; Dikshit, M. Modulations in human neutrophil metabolome and S-glutathionylation of glycolytic pathway enzymes during the course of extracellular trap formation. Biochim. Biophys. Acta BBA Mol. Basis Dis. 2023, 1869, 166581.
|
[17] |
Skendros, P.; Mitsios, A.; Chrysanthopoulou, A.; Mastellos, D.C.; Metallidis, S.; Rafailidis, P.; Ntinopoulou, M.; Sertaridou, E.; Tsironidou, V.; Tsigalou, C.; Tektonidou, M.; Konstantinidis, T.; Papagoras, C.; Mitroulis, I.; Germanidis, G.; Lambris, J.D.; Ritis, K. Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J. Clin. Invest. 2020, 130, 6151–6157.
|
[18] |
Zenaro, E.; Pietronigro, E.; Della Bianca, V.; Piacentino, G.; Marongiu, L.; Budui, S.; Turano, E.; Rossi, B.; Angiari, S.; Dusi, S.; Montresor, A.; Carlucci, T.; Nanì, S.; Tosadori, G.; Calciano, L.; Catalucci, D.; Berton, G.; Bonetti, B.; Constantin, G. Neutrophils promote Alzheimer’s disease-like pathology and cognitive decline via LFA-1 integrin. Nat. Med. 2015, 21, 880–886.
|
[19] |
Burmeister, A.; Vidal-Y-Sy, S.; Liu, X.B.; Mess, C.; Wang, Y.Y.; Konwar, S.; Tschongov, T.; Häffner, K.; Huck, V.; Schneider, S.W.; Gorzelanny, C. Impact of neutrophil extracellular traps on fluid properties, blood flow and complement activation. Front. Immunol. 2022, 13, 1078891.
|
[20] |
Bergamaschini, L.; Canziani, S.; Bottasso, B.; Cugno, M.; Braidotti, P.; Agostoni, A. Alzheimer’s β-amyloid peptides can activate the early components of complement classical pathway in a C1q-independent manner. Clin. Exp. Immunol. 2001, 115, 526–533.
|
[21] |
Sun, J.C.; Roy, S. The physical approximation of APP and BACE-1: a key event in Alzheimer’s disease pathogenesis. Dev. Neurobiol. 2018, 78, 340–347.
|
[22] |
Yu, J.P.; Niu, Y.; Sun, Q.; Xu, F.R.; Liang, L.; Wang, C.; Xu, P. Design and synthesis of 2-aminobenzimidazoles as potential BACE1 inhibitors. J. Chin. Pharm. Sci. 2017, 26, 650–659.
|
[23] |
Zhang, Y.; Wang, P.C. Age-related increase of insulin-degrading enzyme is inversely correlated with cognitive function in APPswe/PS1dE9 mice. Med. Sci. Monit. 2018, 24, 2446–2455.
|
[24] |
Rowland, H.A.; Moxon, S.R.; Corbett, N.J.; Hanson, K.; Fisher, K.; Kellett, K.A.B.; Hooper, N.M. Inhibition of insulin-degrading enzyme in human neurons promotes amyloid-β deposition. Neuronal Signal. 2023, 7, NS20230016.
|
[25] |
Abramov-Harpaz, K.; Miller, Y. Insights into non-proteolytic inhibitory mechanisms of polymorphic early-stage amyloid β oligomers by insulin degrading enzyme. Biomolecules. 2022, 12, 1886.
|
[26] |
Deng, S.F.; Yi, P.; Xu, M.L.; Yi, Q.; Feng, J.G. Dysfunctional gene splicing in glucose metabolism may contribute to Alzheimer’s disease. Chin. Med. J. 2023, 136, 666–675.
|
[27] |
Corraliza-Gomez, M.; Bermejo, T.; Lilue, J.T.; Rodriguez-Iglesias, N.; Valero, J.; Cozar-Castellano, I.; Arranz, E.; Sanchez, D.; Ganfornina, M.D. Insulin-degrading enzyme (IDE) as a modulator of microglial phenotypes in the context of Alzheimer’s disease and brain aging. J. Neuroinflammation. 2023, 20, 233.
|
[28] |
Corraliza-Gómez, M.; Lillo, C.; Cózar-Castellano, I.; Arranz, E.; Sanchez, D.; Ganfornina, M.D. Evolutionary origin of insulin-degrading enzyme and its subcellular localization and secretion mechanism: a study in microglial cells. Cells. 2022, 11, 227.
|
[29] |
Song, T.; Song, X.P.; Zhu, C.; Patrick, R.; Skurla, M.; Santangelo, I.; Green, M.; Harper, D.; Ren, B.Y.; Forester, B.P.; Öngür, D.; Du, F. Mitochondrial dysfunction, oxidative stress, neuroinflammation, and metabolic alterations in the progression of Alzheimer’s disease: a meta-analysis of in vivo magnetic resonance spectroscopy studies. Ageing Res. Rev. 2021, 72, 101503.
|
[30] |
Han, S.; Zhang, M.Y.; Jeong, Y.Y.; Margolis, D.J.; Cai, Q. The role of mitophagy in the regulation of mitochondrial energetic status in neurons. Autophagy. 2021, 17, 4182–4201.
|
[31] |
Kim, E.; Rath, E.M.; Tsang, V.H.M.; Duff, A.P.; Robinson, B.G.; Church, W.B.; Benn, D.E.; Dwight, T.; Clifton-Bligh, R.J. Structural and functional consequences of succinate dehydrogenase subunit B mutations. Endocr. Relat. Cancer. 2015, 22, 387–397.
|
[32] |
Goncalves, J.; Moog, S.; Morin, A.; Gentric, G.; Müller, S.; Morrell, A.P.; Kluckova, K.; Stewart, T.J.; Andoniadou, C.L.; Lussey-Lepoutre, C.; Bénit, P.; Thakker, A.; Vettore, L.; Roberts, J.; Rodriguez, R.; Mechta-Grigoriou, F.; Gimenez-Roqueplo, A.P.; Letouzé, E.; Tennant, D.A.; Favier, J. Loss of SDHB promotes dysregulated iron homeostasis, oxidative stress, and sensitivity to ascorbate. Cancer Res. 2021, 81, 3480–3494.
|
[33] |
Dona, M.; Neijman, K.; Timmers, H.J.L.M. MITOCHONDRIA: Succinate dehydrogenase subunit B-associated phaeochromocytoma and paraganglioma. Int. J. Biochem. Cell Biol. 2021, 134, 105949.
|
[34] |
Yi, F.; Cai, C.M.; Ruan, B.Z.; Hao, M.G.; Yeo, S.K.; Haas, M.; Yang, F.C.; Zhang, X.T.; Guan, J.L. Regulation of RB1CC1/FIP200 stability and autophagy function by CREBBP-mediated acetylation in an intrinsically disordered region. Autophagy. 2023, 19, 1662–1677.
|
[35] |
Tang, X.; Walter, E.; Wohleb, E.; Fan, Y.B.; Wang, C.R. ATG5 (autophagy related 5) in microglia controls hippocampal neurogenesis in Alzheimer disease. Autophagy. 2024, 20, 847–862.
|
[36] |
Chano, T.; Okabe, H.; Hulette, C.M. RB1CC1 insufficiency causes neuronal atrophy through mTOR signaling alteration and involved in the pathology of Alzheimer’s diseases. Brain Res. 2007, 1168, 97–105.
|