[1] |
Coussement, P.A.A. Inulin and oligofructose: safe intakes and legal status. J. Nutr. 1999, 129, 8161–8170.
|
[2] |
Husemann, T. Pharmacographia. A history of the principal drugs of vegetable origin, met with in great Britain and British India. By Friedrich A. Flückiger, phil. dr., professor in the university of strassburg, and Daniel hanbury, F. R. s., fellow of the Linnean and chemical societies of london. second edition. Macmillan and co. 1879.803 S. in octav. Arch. Pharm. Pharm. Med. Chem. 1880, 216, 235–238.
|
[3] |
Bacon, J.S.D.; Edelman, J. The carbohydrates of the Jerusalem artichoke and other Compositae. Biochem. J. 1951, 48, 114–126.
|
[4] |
Niness, K.R. Inulin and oligofructose: what are they? J. Nutr. 1999, 129, 1402S–1406S.
|
[5] |
Carpita, N.C.; Kanabus, J.; Housley, T.L. Linkage structure of fructans and fructan oligomers from triticum aestivum and festuca arundinacea leaves. J. Plant Physiol. 1989, 134, 162–168.
|
[6] |
Liu, F.; Prabhakar, M.; Ju, J.; Long, H.; Zhou, H.W. Effect of inulin-type fructans on blood lipid profile and glucose level: a systematic review and meta-analysis of randomized controlled trials. Eur. J. Clin. Nutr. 2017, 71, 9–20.
|
[7] |
Lopez, H.W.; Coudray, C.; Levrat-Verny, M.A.; Feillet-Coudray, C.; Demigné, C.; Rémésy, C. Fructooligosaccharides enhance mineral apparent absorption and counteract the deleterious effects of phytic acid on mineral homeostasis in rats. J. Nutr. Biochem. 2000, 11, 500–508.
|
[8] |
Cashman, K.D. A prebiotic substance persistently enhances intestinal calcium absorption and increases bone mineralization in young adolescents. Nutr. Rev. 2006, 64, 189–196.
|
[9] |
Griffin, I.J.; Davila, P.M.; Abrams, S.A. Non-digestible oligosaccharides and calcium absorption in girls with adequate calcium intakes. Br. J. Nutr. 2002, 87, S187–S191.
|
[10] |
Mazraeh, R.; Azizi-Soleiman, F.; Jazayeri, S.M.H.M.; Noori, S.M.A. Effect of inulin-type fructans in patients undergoing cancer treatments: a systematic review. Pak. J. Med. Sci. 2019, 35, 575–580.
|
[11] |
Messaoudi, M.; Rozan, P.; Nejdi, A.; Hidalgo, S.; Desor, D. Behavioural and cognitive effects of oligofructose-enriched inulin in rats. Br. J. Nutr. 2005, 93, S27–S30.
|
[12] |
Gupta, N.; Jangid, A.K.; Pooja, D.; Kulhari, H. Inulin: a novel and stretchy polysaccharide tool for biomedical and nutritional applications. Int. J. Biol. Macromol. 2019, 132, 852–863.
|
[13] |
Marrubini, G.; Appelblad, P.; Maietta, M.; Papetti, A. Hydrophilic interaction chromatography in food matrices analysis: an updated review. Food Chem. 2018, 257, 53–66.
|
[14] |
Zhang, Q.; Yang, F.Q.; Ge, L.Y.; Hu, Y.J.; Xia, Z.N. Recent applications of hydrophilic interaction liquid chromatography in pharmaceutical analysis. J. Sep. Sci. 2017, 40, 49–80.
|
[15] |
Ikegami, T. Hydrophilic interaction chromatography for the analysis of biopharmaceutical drugs and therapeutic peptides: a review based on the separation characteristics of the hydrophilic interaction chromatography phases. J. Sep. Sci. 2019, 42, 130–213.
|
[16] |
Yang, Z.M.; Hu, J.; Zhao, M.Y. Isolation and quantitative determination of inulin-type oligosaccharides in roots of Morinda officinalis. Carbohydr. Polym. 2011, 83, 1997–2004.
|
[17] |
Li, J.; Hu, D.J.; Zong, W.R.; Lv, G.; Zhao, J.; Li, S.P. Determination of inulin-type fructooligosaccharides in edible plants by high-performance liquid chromatography with charged aerosol detector. J. Agric. Food Chem. 2014, 62, 7707–7713.
|
[18] |
Nyangale, E.P.; Farmer, S.; Keller, D.; Chernoff, D.; Gibson, G.R. Effect of prebiotics on the fecal microbiota of elderly volunteers after dietary supplementation of Bacillus coagulans GBI-30, 6086. Anaerobe. 2014, 30, 75–81.
|
[19] |
Chi, L.D.; Khan, I.; Lin, Z.B.; Zhang, J.W.; Lee, M.Y.S.; Leong, W.; Hsiao, W.L.W.; Zheng, Y. Fructo-oligosaccharides from Morinda officinalis remodeled gut microbiota and alleviated depression features in a stress rat model. Phytomedicine. 2020, 67, 153157.
|