[1] Li, H.K.; Dai, M.; Jia, W. Paeonol attenuates high-fat-diet-induced atherosclerosis in rabbits by anti-inflammatory activity. Planta. Med. 2009, 75, 7-11.
[2] Song, A.W.; Wu, H.F.; Dai, M. Paeonol attenuates progression of atherosclerotic lesion formation through lipid regulation, anti-inflammatory and antioxidant activities. J. Chin. Pharm. Sci. 2018, 27, 565-575.
[3] Lee, B.; Shin, Y.W.; Bae, E.A.; Han, S.J.; Kim, J.S.; Kang, S.S.; Kim, D.H. Antiallergic effect of the root of Paeonia lactiflora and its constituents paeoniflorin and paeonol. Arch. Pharm. Res. 2008, 31, 445-450.
[4] Himaya, S.W.; Ryu, B.; Qian, Z.J.; Kim, S.K. Paeonol from Hippocampus kuda Bleeler suppressed the neuro-inflammatory responses in vitro via NF-κB and MAPK signaling pathways. Toxicol. In. Vitro. 2012, 26, 878-887.
[5] Zong, S.Y.; Pu, Y.Q.; Xu, B.L.; Zhang, T.; Wang, B. Study on the physicochemical properties and anti-inflammatory effects of paeonol in rats with TNBS-induced ulcerative colitis. Int. Immunopharmacol. 2017, 42, 32-38.
[6] Lau, C.H.; Chan, C.M.; Chan, Y.W.; Lau, K.M.; Lau, T.W.; Lam, F.C.; Law, W.T.; Che, C.T.; Leung, P.C.; Fung, K.P.; Ho, Y.Y.; Lau, C.B. Pharmacological investigations of the anti-diabetic effect of Cortex Moutan and its active component paeonol. Phytomedicine. 2007, 14, 778-784.
[7] Yao, J.J.; Zhang, Y.X.; Hu, Q.M.; Zeng, D.C.; Hua, F.; Meng, W.; Wang, W.Y.; Bao, G.H. Optimization of paeonol-loaded poly (butyl-2-cyanoacrylate) nanocapsules by central composite design with response surface methodology together with the antibacterial properties. Eur. J. Pharm. Sci. 2017, 101, 189-199.
[8] Chen, Z.X.; Li, B.; Liu, T.; Wang, X.; Zhu, Y.; Wang, L.; Wang, X.H.; Niu, X.; Xiao, Y.; Sun, Q. Evaluation of paeonol-loaded transethosomes as transdermal delivery carriers. Eur. J. Pharm. Sci. 2017, 99, 240-245.
[9] Chen, C.; Jia, F.; Hou, Z.B.; Ruan, S.; Lu, Q.B. Delivery of paeonol by nanoparticles enhances its in vitro and in vivo antitumor effects. Int. J. Nanomedicine. 2017, 12, 6605-6616.
[10] Jiao, Y.; Zheng, X.Q.; Chang, Y.; Li, D.J.; Sun, X.H.; Liu, X.L. Zein-derived peptides as nanocarriers to increase the water solubility and stability of lutein. Food Funct. 2018, 9, 117-123.
[11] Freag, M.S.; Saleh, W.M.; Abdallah, O.Y. Self-assembled phospholipid-based phytosomal nanocarriers as promising platforms for improving oral bioavailability of the anticancer celastrol. Int. J. Pharm. 2018, 535, 18-26.
[12] Fares, A.R.; Elmeshad, A.N.; Kassem, M.A.A. Enhancement of dissolution and oral bioavailability of lacidipine via pluronic P123/ F127 mixed polymeric micelles: formulation, optimization using central composite design and in vivo bioavailability study. Drug Deliv. 2018, 25, 132-142.
[13] Zhang, Q.H.; Polyakov, N.E.; Chistyachenko, Y.S.; Khvostov, M.V.; Frolova, T.S.; Tolstikova, T.G.; Dushkin, A.V.; Su, W.K. Preparation of curcumin self-micelle solid dispersion with enhanced bioavailability and cytotoxic activity by mechanochemistry. Drug. Deliv. 2018, 25, 198-209.
[14] Lu, Z.; Bu, C.P.; Hu, W.C.; Zhang, H.; Liu, M.R.; Lu, M.Q.; Zhai, G.X. Preparation and in vitro and in vivo evaluation of quercetin-loaded mixed micelles for oral delivery. Biosci. Biotechnol. Biochem. 2018, 82, 238-246.
[15] Hao, YL.; Zhong, T.; Du, R.; Zhang, H.; Liu, BL.; Zhang, X. The cellular uptake and anti-tumor activity of conjugated linoleic acid-paclitaxel loaded iRGD-modified lysolipid-containing thermosensitive liposomes. J. Chin. Pharm. Sci. 2019, 28, 121-133.
[16] Bu, Y.Z.; Mu, L.M.; Liu, L.; Lu, W.L. Construction of folate-conjugated epirubicin liposomes for enhancing the cellular uptake and the co-localization with nuclei of invasive breast cancer cells. J. Chin. Pharm. Sci. 2018, 27, 229-240
[17] Wu, L.; Bi, Y.J.; Wu, H.F. Formulation optimization and the absorption mechanisms of nanoemulsion in improving baicalin oral exposure. Drug. Dev. Ind. Pharm. 2018, 44, 266-275.
[18] Gundogdu, E.; Karasulu, H.Y.; Koksal, C.; Karasulu, E. The novel oral imatinib microemulsions: physical properties, cytotoxicity activities and improved Caco-2 cell permeability. J. Microencapsul. 2013, 30, 132-142.
[19] Li, Y.J.; Hu, X.B.; Lu, X.L.; Liao, D.H.; Tang, T.T.; Wu, J.Y.; Xiang, D.X. Nanoemulsion-based delivery system for enhanced oral bioavailability and Caco-2 cell monolayers permeability of berberine hydrochloride. Drug Deliv. 2017, 24, 1868-1873.
[20] Hong, L.; Zhou, C.L.; Chen, F.P.; Han, D.; Wang, C.Y.; Li, J.X.; Chi, Z.; Liu, C.G. Development of a carboxymethyl chitosan functionalized nanoemulsion formulation for increasing aqueous solubility, stability and skin permeability of astaxanthin using low-energy method. J. Microencapsul. 2017, 34, 707-721.
[21] Piazzini, V.; Monteforte, E.; Luceri, C.; Bigagli, E.; Bilia, A.R.; Bergonzi, M.C. Nanoemulsion for improving solubility and permeability of Vitex agnus-castus extract: formulation and in vitro evaluation using PAMPA and Caco-2 approaches. Drug Deliv. 2017, 24, 380-390.
[22] Chen, S.F; Zhang, J.; Wu, L.; Wu, H.F; Dai, M. Paeonol nanoemulsion for enhanced oral bioavailability: Optimization and mechanism. Nanomedicine(Lond). 2018, 13, 269-282.
[23] Hussain, N. Regulatory aspects in the pharmaceutical development of nanoparticle drug delivery systems designed to cross the intestinal epithelium and M-cells. Int. J. Pharm. 2016, 514, 15-23.
[24] Kyd, J.M.; Cripps, A.W. Functional differences between M cells and enterocytes in sampling luminal antigens. Vaccine. 2008, 26, 6221-6224.
[25] Brück, S.; Strohmeier, J.; Busch, D.; Drozdzik, M.; Oswald, S. Caco-2 cells-expression, regulation and function of drug transporters compared with human jejunal tissue. Biopharm. Drug. Dispos. 2017, 38, 115-126.
[26] Min, H.P.; Niu, M.M.; Zhang, W.L.; Yan, J.; Li, J.C.; Tan, X.Y.; Li, B.; Su, M.X.; Di, B.; Yan, F. Emodin reverses leukemia multidrug resistance by competitive inhibition and downregulation of P-glycoprotein. PLoS One. 2017, 12, e0187971.
[27] Lapierre, L.A. The molecular structure of the tight junction. Adv. Drug. Deliv. Rev. 2000, 41, 255-264.
[28] Ferraretto, A.; Bottani, M.; De Luca,.P.; Cornaghi, L.; Arnaboldi, F.; Maggioni, M.; Fiorilli, A.; Donetti, E. Morphofunctional properties of a differentiated Caco2/HT-29 co-culture as an in vitro model of human intestinal epithelium. Biosci. Rep. 2018, 38, BSR20171497.
[29] Noda, S.; Yamada, A.; Nakaoka, K.; Goseki-Sone, M. 1-alpha,25-Dihydroxyvitamin D3 up-regulates the expression of 2 types of human intestinal alkaline phosphatase alternative splicing variants in Caco-2 cells and may be an important regulator of their expression in gut homeostasis. Nutr. Res. 2017, 46, 59-67.
[30] Gullberg, E.; Leonard, M.; Karlsson, J.;Hopkins, A.M.; Bravden, D.; Baird, A.W.; Artursson, P. Expression of specific markers and particle transport in a new human intestinal M-cell model. Biochem. Biophys. Res. Commun. 2000, 279, 808-813.
[31] Brocks, D.R.; Davies, N.M. Lymphatic Drug Absorption via the Enterocytes: Pharmacokinetic Simulation, Modeling, and Considerations for Optimal Drug Development. J. Pharm. Pharm. Sci. 2018, 21, 254s-270s.
[32] des Rieux, A.; Fievez, V.; Théate, I.; Mast, J.; Préat, V.; Schneider, Y.J. An improved in vitro model of human intestinal follicle-associated epithelium to study nanoparticle transport by M cells. Eur. J. Pharm. Sci. 2007, 30, 380-391.
[33] Artursson, P.; Karlsson, J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem. Biophys. Res. Commun. 1991, 175, 880-885.
[34] Liu, Y.X.; Wang, Y.F.; Peng, Y.M.; Liu, B.J.; Ma, F.; Jiang, J.H.; Wang, Q.D.; Chang, J.B. Effects of the antiretroviral drug 2'-deoxy-2'-β-fluoro-4'-azidocytidine (FNC) on P-gp, MRP2 and BCRP expressions and functions. Pharmazie. 2018, 73, 503-507.
[35] Roger, E.; Lagarce, F.; Garcion, E.; Benoit, J.P. Lipid nanocarriers improve paclitaxel transport throughout human intestinal epithelial cells by using vesicle-mediated transcytosis. J. Control. Release. 2009, 140, 174-181. |