[1] Grupke, S.; Hall, J.; Dobbs, M.; Bix, G.J. Understanding history, and not repeating it. Neuroprotection for acute ischemic stroke: From review to preview. Clin. Neurol. Neurosurg. 2015, 129, 1–9.
[2] Powers, W.J.; Rabinstein, A.A.; Ackerson, T.; Ackerson, T.; Adeoye, O.M.; Bambakidis, N.C.; Becker, K.; Biller, J.; Brown, M.; Demaerschalk, B.M.; Hoh, B.; Jauch, E.C.; Kidwell, C.S.; LeslieMazwi, T.M.; Ovbiagele, B.; Scott, P.A.; Sheth, K.N.; Southerland, A.M.; Summers, D.V.; Tirschwell, D.L. 2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2018, 49, e46–e110.
[3] Eltzschig, H.K.; Eckle, T. Ischemia and reperfusion—from mechanism to translation. Nat Med. 2011, 17, 1391–1401.
[4] Akpan, N.; Troy, C.M. Caspase inhibitors: prospective therapies for stroke. Neuroscientist. 2013, 19, 129–136.
[5] Cao, G.; Pei, W.; Ge, H.; Liang, Q.; Luo, Y.; Sharp, F.R.; Lu, A.; Ran, R.; Graham, S.H.; Chen, J. In Vivo Delivery of a Bcl-xL Fusion Protein Containing the TAT Protein Transduction Domain Protects against Ischemic Brain Injury and Neuronal Apoptosis. J Neurosci. 2002, 22, 5423–5431.
[6] Gabellini, C.; Trisciuoglio, D.; Del, B.D. Non-canonical roles of Bcl-2 and Bcl-xL proteins: relevance of BH4 domain. Carcinogenesis. 2017, 38, 579–587.
[7] Shimizu, S.; Konishi, A.; Kodama, T.; Tsujimoto, Y. BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proc. Natl. Acad. Sci. USA. 2000, 97, 3100–3105.
[8] Miljić, P.; Heylen, E.; Willemse, J.; Djordjević, V.; Radojković, D.; Colović, M.; Elezović, I.; Hendriks, D. Thrombin activatable fibrinolysis inhibitor (TAFI): a molecular link between coagulation and fibrinolysis. Srp. Arh. Celokupno. Lek. 2010, 138, 74–78.
[9] Nagashima, M.; Werner, M.; Wang, M.; Zhao, L.; Light, D.R.; Pagila, R.; Morser, J.; Verhallen, P. An inhibitor of activated thrombin-activatable fibrinolysis inhibitor potentiates tissue-type plasminogen activator-induced thrombolysis in a rabbit jugular vein thrombolysis model. Thromb. Res. 2000, 98, 333–342.
[10] Wang, Y.X.; Da, C.V.; Vincelette, J.; Zhao, L.; Nagashima, M.; Kawai, K.; Yuan, S.; Emayan, K.; Islam, I.; Hosoya, J.; Sullivan, M.E.; Dole, W.P.; Morser, J.; Buckman, B.O.; Vergona, R. A novel inhibitor of activated thrombin activatable fibrinolysis inhibitor (TAFIa) - part II: enhancement of both exogenous and endogenous fibrinolysis in animal models of thrombosis. Thromb. Haemost. 2007, 97, 54–61.
[11] Cappello, M.; Vlasuk, G.P; Bergum, P.W.; Huang, S.; Hotez, P.J. Ancylostoma caninum anticoagulant peptide: a hookworm-derived inhibitor of human coagulation factor Xa. Proc. Natl. Acad. Sci. USA. 1995, 92, 6152–6156.
[12] Ding, S.; Liu, X.Y.; Zhu, Y.J.; Wang, Y.Y. Thrombolytic effect of rAcAP5 and its mechanism. J. Chin. Pharm. Sci. 2012, 21, 70–75.
[13] Bledzka, K.; Smyth, S.S.; Plow, E.F. Integrin alpha IIb beta 3: From Discovery to Efficacious Therapeutic Target. Circ. Res. 2013, 112, 1189–1200.
[14] Guo, S.; Shen, S.; Wang, J.; Wang, H.; Li, M.; Liu, Y.; Hou, F.; Liao, Y.; Bin, J. Detection of High-Risk Atherosclerotic Plaques with Ultrasound Molecular Imaging of Glycoprotein IIb/IIIa Receptor on Activated Platelets. Theranostics. 2015, 5, 418–430.
[15] Zhang, L.; Jing, W.; Yu, M.; Ru, B. Functional properties of a recombinant chimeric plasminogen activator with platelet-targeted fibrinolytic and anticoagulant potential. Mol. Genet. Metab. 2004, 82, 304–311.
[16] Yan, H.L.; Sun, S.H.; Wang, W.T.; Ding, F.X.; Mei, Q.; Xue, G. Design and characterization of a platelet-targeted plasminogen activator with enhanced thrombolytic and antithrombotic potency. Biotechnol. Appl. Biochem. 2007, 46, 115–125.
[17] Yang, M.; Cui, G.; Zhao, M.; Wang, C.; Wang, L.; Liu, H.; Peng, S. The effect of complexation of Cu (II) with P6A peptide and its analogs on their thrombolytic activities. Int. J. Pharm. 2008, 362, 81–87.
[18] Zhang, Z.; Chopp, M.; Zhang, R.L.; Goussev, A. A Mouse Model of Embolic Focal Cerebral Ischemia. J. Cereb. Blood Flow Metab. 1997, 17, 1081–1088.
[19] Yin, J.; Bao, L.; Tian, H.; Gao, X.; Yao, W. Quantitative relationship between the mRNA secondary structure of translational initiation region and the expression level of heterologous protein in Escherichia coli. J. Ind. Microbiol. Biotechnol. 2016, 43, 97–102.
[20] Bai, C.; Wang, X.; Zhang, J.; Sun, A.; Wei, D.; Yang, S. Optimisation of the mRNA secondary structure to improve the expression of interleukin-24 (IL-24) in Escherichia coli. Biotechnol. Lett. 2014, 36, 1711–1716.
[21] Hirsh, A.G.; Tsonev, L.I. Multiple, simultaneous, independent gradients for a versatile multidimensional liquid chromatography. Part II: Application 2: Computer controlled pH gradients in the presence of urea provide improved separation of proteins: Stability influenced anion and cation exchange chromatography. J. Chromatogr. A. 2017, 1495, 22–30.
[22] Bunnage, M.E.; Blagg, J.; Steele, J.; Owen, D.R.; Allerton, C.; McElroy, A.B.; Miller, D.; Ringer, T.; Butcher, K.; Beaumont, K.; Evans, K.; Gray, A.J.; Holland, S.J.; Feeder, N.; Moore, R.S.; Brown, D.G. Discovery of potent & selective inhibitors of activated thrombin-activatable fibrinolysis inhibitor for the treatment of thrombosis. J. Med. Chem. 2007, 50, 6095–6103.
[23] Hendrickx, M.L.; Zatloukalova, M.; Hassanzadeh-Ghassabeh, G.; Muyldermans, S.; Gils, A.; Declerck, P.J. In vitro and in vivo characterisation of the profibrinolytic effect of an inhibitory anti-rat TAFI nanobody. Thromb. Haemost. 2014, 111, 824–832.
[24] Durand, A.; Chauveau, F.; Cho, T.H.; Kallus, C.; Wagner, M.; Boutitie, F.; Maucort-Boulch, D.; Berthezène, Y.; Wiart, M.; Nighoghossian, N. Effects of a TAFI-Inhibitor Combined with a Suboptimal Dose of rtPA in a Murine Thromboembolic Model of Stroke. Cerebrovasc. Dis. 2014, 38, 268–275.
[25] Del-Zoppo, G.J. The neurovascular unit in the setting of stroke. J. Intern. Med. 2010, 267, 156–171.
[26] Romanos, E.; Planas, A.M.; Amaro, S.; Chamorro, A. Uric acid reduces brain damage and improves the benefits of rt-PA in a rat model of thromboembolic stroke. J. Cereb. Blood Flow Metab. 2007, 27, 14–20.
[27] Amaro, S.; Soy, D.; Obach, V.; Cervera, A.; Planas, A.M.; Chamorro, A. A pilot study of dual treatment with recombinant tissue plasminogen activator and uric acid in acute ischemic stroke. Stroke. 2007, 38, 2173–2175. |