中国药学(英文版) ›› 2026, Vol. 35 ›› Issue (1): 16-37.DOI: 10.5246/jcps.2026.01.002
高赞研1,#, 高世玉1,#, 谢茂梅1, 陈晨1, 李永圆1, 贾广成2, 刘睿1,3, 王海霞1,3,*(
)
收稿日期:2025-09-11
修回日期:2025-10-29
接受日期:2026-01-10
出版日期:2026-01-31
发布日期:2026-01-31
通讯作者:
王海霞
Zanyan Gao1,#, Shiyu Gao1,#, Maomei Xie1, Chen Chen1, Yongyuan Li1, Guangcheng Jia2, Rui Liu1,3, Haixia Wang1,3,*(
)
Received:2025-09-11
Revised:2025-10-29
Accepted:2026-01-10
Online:2026-01-31
Published:2026-01-31
Contact:
Haixia Wang
About author:# Zanyan Gao and Shiyu Gao contributed equally to this work.
Supported by:摘要:
随着细菌感染已成为全球第二大死因, 人们对新型高效抗菌药物的需求越来越迫切。3D打印技术为治疗细菌性炎症的口服制剂、内部植入物和外部敷料的设计和制造带来了新的可能。传统的口服抗菌制剂在药物释放速率和胃肠道药物稳定性方面存在局限性。借助3D打印技术, 实现口服制剂的可控释放, 从而提高药物的生物利用度和药效。此外, 内部植入物的制造需要满足个体特异性和形状准确性。3D打印技术可根据患者具体情况采用合适的抗菌材料, 定制个性化植入物, 提高手术成功率, 降低术后感染风险。3D打印技术制备的外用敷料具有良好的抗菌性能, 加速创面愈合时间, 促进患者康复。本文就3D打印技术在口服药物、内部植入物和外用敷料等方面的制备方法、优势和应用效果进行综述, 并提供目前的趋势和研究进展, 为抗菌药物的合理设计和使用提供一些思路和策略。
Supporting:
高赞研, 高世玉, 谢茂梅, 陈晨, 李永圆, 贾广成, 刘睿, 王海霞. 3D打印技术在细菌性炎症治疗中的应用: 口服制剂、内部植入物、外用敷料[J]. 中国药学(英文版), 2026, 35(1): 16-37.
Zanyan Gao, Shiyu Gao, Maomei Xie, Chen Chen, Yongyuan Li, Guangcheng Jia, Rui Liu, Haixia Wang. Application of 3D printing technology in the treatment of bacterial inflammation: oral formulations, internal implants, and external dressings[J]. Journal of Chinese Pharmaceutical Sciences, 2026, 35(1): 16-37.
Figure 1. Schematic diagram of self-setting bioactive bone repair scaffold loaded with TP-Mg for the treatment of infectious bone defects. α-TCP forms a more stable surface mineralized structure through hydration reaction. Collagen acquires deformability through the reaction with Schiff bases. TP-Mg promotes the repair of infectious bone defects through three mechanisms: (1) elimination of pathogenic bacteria at the infection site; (2) promotion of macrophage polarization toward an anti-inflammatory phenotype; (3) promotion of osteogenic differentiation of mesenchymal stem cells[60].
| [1] |
GBD 2019 Antimicrobial Resistance Collaborators. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2022, 400, 2221–2248.
|
| [2] |
Perin, J.; Mulick, A.; Yeung, D.; Villavicencio, F.; Lopez, G.; Strong, K.L.; Prieto-Merino, D.; Cousens, S.; Black, R.E.; Liu, L. Global, regional, and national causes of under-5 mortality in 2000–19: an updated systematic analysis with implications for the Sustainable Development Goals. Lancet Child Adolesc. Health. 2022, 6, 106–115.
|
| [3] |
Groenen, H.; Bontekoning, N.; Jalalzadeh, H.; Buis, D.R.; Dreissen, Y.E.M.; Goosen, J.H.M.; Graveland, H.; Griekspoor, M.; IJpma, F.F.A.; van der Laan, M.J.; Schaad, R.R.; Segers, P.; van der Zwet, W.C.; Orsini, R.G.; Eskes, A.M.; Wolfhagen, N.; de Jonge, S.W.; Boermeester, M.A. Incisional wound irrigation for the prevention of surgical site infection: a systematic review and network meta-analysis. JAMA Surg. 2024, 159, 792–800.
|
| [4] |
Coburn, B.; Morris, A.M.; Tomlinson, G.; Detsky, A.S. Does this adult patient with suspected bacteremia require blood cultures? JAMA. 2012, 308, 502–511.
|
| [5] |
Hu, W.Y.H.; Zhang, Y.M.; Hao, J.J.; Yang, X.J.; Zhou, Y.Y.; Liu, X.Y.; Qin, X.H.; Xiao, X.H.; Wang, J.B. A new strategy for risk prevention and control of sequential use of Chinese and western medicine injections based on "Time Window". Sci. Bull. 2019, 64, 3020–3029.
|
| [6] |
Rand, B.C.; Penn-Barwell, J.G.; Wenke, J.C. Combined local and systemic antibiotic delivery improves eradication of wound contamination: an animal experimental model of contaminated fracture. Bone Joint J. 2015, 97-B, 1423–1427.
|
| [7] |
Bandyopadhyay, A.; Bose, S.; Das, S. 3D printing of biomaterials. MRS Bull. 2015, 40, 108–115.
|
| [8] |
Zhang, Q. From the approving of 3D printing tablet to the innovation of drug delivery systems. Acta Pharm. Sin. 2016, 51, 1655–1658.
|
| [9] |
Jia, Z.J.; Xu, X.X.; Zhu, D.H.; Zheng, Y.F. Design, printing, and engineering of regenerative biomaterials for personalized bone healthcare. Prog. Mater. Sci. 2023, 134, 101072.
|
| [10] |
Zhao, X.Y.; Li, N.; Zhang, Z.Q.; Hong, J.J.; Zhang, X.X.; Hao, Y.J.; Wang, J.; Xie, Q.P.; Zhang, Y.; Li, H.F.; Liu, M.X.; Zhang, P.F.; Ren, X.Y.; Wang, X. Beyond hype: unveiling the Real challenges in clinical translation of 3D printed bone scaffolds and the fresh prospects of bioprinted organoids. J. Nanobiotechnology. 2024, 22, 500.
|
| [11] |
Periferakis, A.; Periferakis, A.T.; Troumpata, L.; Dragosloveanu, S.; Timofticiuc, I.A.; Georgatos-Garcia, S.; Scheau, A.E.; Periferakis, K.; Caruntu, A.; Badarau, I.A.; Scheau, C.; Caruntu, C. Use of biomaterials in 3D printing as a solution to microbial infections in arthroplasty and osseous reconstruction. Biomimetics. 2024, 9, 154.
|
| [12] |
Dubey, A.; Vahabi, H.; Kumaravel, V. Antimicrobial and biodegradable 3D printed scaffolds for orthopedic infections. ACS Biomater. Sci. Eng. 2023, 9, 4020–4044.
|
| [13] |
Jandyal, A.; Chaturvedi, I.; Wazir, I.; Raina, A.; Ul Haq, M.I. 3D printing–A review of processes, materials and applications in industry 4.0. Sustain. Oper. Comput. 2022, 3, 33–42.
|
| [14] |
Jacob, S.; Nair, A.B.; Patel, V.; Shah, J. 3D printing technologies: recent development and emerging applications in various drug delivery systems. AAPS PharmSciTech. 2020, 21, 220.
|
| [15] |
de Oliveira, R.S.; Fantaus, S.S.; Guillot, A.J.; Melero, A.; Beck, R.C.R. 3D-printed products for topical skin applications: from personalized dressings to drug delivery. Pharmaceutics. 2021, 13, 1946.
|
| [16] |
Aminov, R. History of antimicrobial drug discovery: major classes and health impact. Biochem. Pharmacol. 2017, 133, 4–19.
|
| [17] |
Bhunia, S.; Mallick, S.; Mondal, A.I.; Saha, A.; Ray, P.; Roy, S.; Chakraborty, T. Exploring the scope of traditional Chinese medicinal plants in battle of antibiotic resistance–A comprehensive review. Pharmacol. Res. Mod. Chin. Med. 2025, 14, 100574.
|
| [18] |
Li, T.; Wang, P.L.; Guo, W.B.; Huang, X.M.; Tian, X.H.; Wu, G.R.; Xu, B.; Li, F.F.; Yan, C.; Liang, X.J.; Lei, H.M. Natural berberine-based Chinese herb medicine assembled nanostructures with modified antibacterial application. ACS Nano. 2019, 13, 6770–6781.
|
| [19] |
Dong, S.Y.; Li, X.; Pan, Q.; Wang, K.C.; Liu, N.; Wang, Y.T.; Zhang, Y.J. Nanotechnology-based approaches for antibacterial therapy. Eur. J. Med. Chem. 2024, 279, 116798.
|
| [20] |
Raghupathi, K.R.; Koodali, R.T.; Manna, A.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir. 2011, 27, 4020–4028.
|
| [21] |
Walsh, J.; Ranmal, S.R.; Ernest, T.B.; Liu, F. Patient acceptability, safety and access: a balancing act for selecting age-appropriate oral dosage forms for paediatric and geriatric populations. Int. J. Pharm. 2018, 536, 547–562.
|
| [22] |
Deng, M.Y.; Wu, S.Y.; Ning, M.Y. 3D printing for controlled release pharmaceuticals: current trends and future directions. Int. J. Pharm. 2025, 669, 125089.
|
| [23] |
Cheng, H.P.; Gao, J.Q.; Zhao, D.H. Characteristics and research development status of major antibacterial drug formulations - an analysis from the perspective of drug review. Chin. J. New Drugs. 2007, 16, 1–4.
|
| [24] |
Hu, Y.L.; Zhang, X.; Mao, S.R. Advances in preparation technology of orally disintegrating tablets. J. Shenyang Pharm. Univ. 2021, 38, 433–438.
|
| [25] |
Sadia, M.; Arafat, B.; Ahmed, W.; Forbes, R.T.; Alhnan, M.A. Channelled tablets: an innovative approach to accelerating drug release from 3D printed tablets. J. Control. Release. 2018, 269, 355–363.
|
| [26] |
Jain, N.; Mandal, S.; Banweer, J.; Jain, S. Effect of superdisintegrants on formulation of taste masked fast disintegrating Ciprofloxacin tablets. Int. Curr. Pharm. J. 2012, 1, 62–67.
|
| [27] |
Khaled, S.A.; Alexander, M.R.; Wildman, R.D.; Wallace, M.J.; Sharpe, S.; Yoo, J.; Roberts, C.J. 3D extrusion printing of high drug loading immediate release paracetamol tablets. Int. J. Pharm. 2018, 538, 223–230.
|
| [28] |
Gültekin, H.E.; Tort, S.; Acartürk, F. An effective technology for the development of immediate release solid dosage forms containing low-dose drug: fused deposition modeling 3D printing. Pharm. Res. 2019, 36, 128.
|
| [29] |
Lan, F.R.; Jang, l.l. Progress in sustained and controlled release technology and development of oral formulations. Herald Med. 2008, 27, 562–564.
|
| [30] |
Chen, C.; Xie, M.M.; Yan, Y.L.; Li, Y.Y.; Li, Z.Y.; Zhang, T.; Gao, Z.Y.; Deng, L.Y.; Wang, H.X. Preparation of berberine hydrochloride-Ag nanoparticle composite antibacterial dressing based on 3D printing technology. J. Biomater. Appl. 2024, 38, 808–820.
|
| [31] |
Homaee Borujeni, S.; Mirdamadian, S.Z.; Varshosaz, J.; Taheri, A. Three-dimensional (3D) printed tablets using ethyl cellulose and hydroxypropyl cellulose to achieve zero order sustained release profile. Cellulose. 2020, 27, 1573–1589.
|
| [32] |
Cui, M.S.; Li, Y.N.; Wang, S.; Chai, Y.Y.; Lou, J.T.; Chen, F.; Li, Q.J.; Pan, W.S.; Ding, P.T. Exploration and preparation of a dose-flexible regulation system for levetiracetam tablets via novel semi-solid extrusion three-dimensional printing. J. Pharm. Sci. 2019, 108, 977–986.
|
| [33] |
Jiang, N.; Ma, X. Research progress on pharmacologic effects of andrographolide in recent 20 years. J. Liaoning Univ. TCM. 2024, 26, 203–208.
|
| [34] |
Li, Y.Y.; Xi, M.M.; Chen, C.; Wen, Y.Q.; Yan, Y.L.; Wang, H.X. Preparation of two andrographolide sustained-release formulations by semi-solid extrusion 3D printing technology. J. Chin. Pharm. Sci. 2023, 32, 935–946.
|
| [35] |
Robles-Martinez, P.; Xu, X.Y.; Trenfield, S.J.; Awad, A.; Goyanes, A.; Telford, R.; Basit, A.W.; Gaisford, S. 3D printing of a multi-layered polypill containing six drugs using a novel stereolithographic method. Pharmaceutics. 2019, 11, 274.
|
| [36] |
Wu, T.Y.; Hu, N.; Sun, S.P. Research progress on gastric retention type sustained/controlled release drug delivery system in China. Chin. J. Mod. Med. 2020, 27, 15–17.
|
| [37] |
Cobaugh, D.J. Health-system specialty pharmacy services: Setting the standard. Am. J. Health Syst. Pharm. 2023, 80, 787–788.
|
| [38] |
Banerjee, S.; Roy, S.; Bhaumik, K.N.; Kshetrapal, P.; Pillai, J. Comparative study of oral lipid nanoparticle formulations (LNFs) for chemical stabilization of antitubercular drugs: physicochemical and cellular evaluation. Artif. Cells Nanomed. Biotechnol. 2018, 46, 540–558.
|
| [39] |
Genina, N.; Boetker, J.P.; Colombo, S.; Harmankaya, N.; Rantanen, J.; Bohr, A. Anti-tuberculosis drug combination for controlled oral delivery using 3D printed compartmental dosage forms: From drug product design to in vivo testing. J. Control. Release. 2017, 268, 40–48.
|
| [40] |
Ghanizadeh Tabriz, A.; Nandi, U.; Hurt, A.P.; Hui, H.W.; Karki, S.; Gong, Y.C.; Kumar, S.; Douroumis, D. 3D printed bilayer tablet with dual controlled drug release for tuberculosis treatment. Int. J. Pharm. 2021, 593, 120147.
|
| [41] |
Zhang, Y.Z.; Fang, S.; Fan, R.D.; Chen, Y. Research progress of bipolar drug delivery system. J. Chin. Pharm. Sci. 2014, 25, 856–858.
|
| [42] |
Kaur, T.; Sharma, S.K. Controlled release of bi-layered delphinidin tablets using 3D printing techniques. J. Pharm. Res. Int. 2020, 73–81.
|
| [43] |
Azab, E.T.; Thabit, A.K.; McKee, S.; Al-Qiraiqiri, A. Levofloxacin versus clarithromycin for helicobacter pylori eradication: are 14 day regimens better than 10 day regimens? Gut Pathog. 2022, 14, 24.
|
| [44] |
Ijaz, Q.A.; Latif, S.; Khan, S.I.; Rashid, M.; Afzal, H.; Jan, N.; Javaid, Z.; Sarfraz, M.; Hussain, A.; Arshad, M.S.; Bukhari, N.I.; Abbas, N. Fabrication and evaluation of differential release bilayer tablets of clarithromycin and levofloxacin by 3D printing. J. Pharm. Innov. 2023, 18, 2145–2157.
|
| [45] |
Goh, W.J.; Tan, S.X.; Pastorin, G.; Ho, P.C.L.; Hu, J.; Lim, S.H. 3D printing of four-in-one oral polypill with multiple release profiles for personalized delivery of caffeine and vitamin B analogues. Int. J. Pharm. 2021, 598, 120360.
|
| [46] |
Coello, R.; Charlett, A.; Wilson, J.; Ward, V.; Pearson, A.; Borriello, P. Adverse impact of surgical site infections in English hospitals. J. Hosp. Infect. 2005, 60, 93–103.
|
| [47] |
Shao, R.Y.; Dong, Y.Q.; Zhang, S.O.; Wu, X.D.; Huang, X.G.; Sun, B.; Zeng, B.; Xu, F.M.; Liang, W.Q. State of the art of bone biomaterials and their interactions with stem cells: Current state and future directions. Biotechnol. J. 2022, 17, e2100074.
|
| [48] |
Goyanes, A.; Wang, J.; Buanz, A.; Martínez-Pacheco, R.; Telford, R.; Gaisford, S.; Basit, A.W. 3D printing of medicines: engineering novel oral devices with unique design and drug release characteristics. Mol. Pharmaceutic. 2015, 12, 4077–4084.
|
| [49] |
He, A.M.; Du, Y.; Bai, X.S.; Wang, L.; Lv, H.C. Research progress in the treatment of fracture-related infections. J. Trauma Acute Care Surg. 2021, 23, 310–314.
|
| [50] |
Lee, J.H.; Baik, J.M.; Yu, Y.S.; Kim, J.H.; Ahn, C.B.; Son, K.H.; Kim, J.H.; Choi, E.S.; Lee, J.W. Development of a heat labile antibiotic eluting 3D printed scaffold for the treatment of osteomyelitis. Sci. Rep. 2020, 10, 7554.
|
| [51] |
Lee, J.H.; Park, J.K.; Son, K.H.; Lee, J.W. PCL/sodium-alginate based 3D-printed dual drug delivery system with antibacterial activity for osteomyelitis therapy. Gels. 2022, 8, 163.
|
| [52] |
Bai, J.F.; Wang, H.; Gao, W.; Liang, F.; Wang, Z.X.; Zhou, Y.; Lan, X.Z.; Chen, X.; Cai, N.; Huang, W.M.; Tang, Y.D. Melt electrohydrodynamic 3D printed poly (ε-caprolactone)/polyethylene glycol/roxithromycin scaffold as a potential anti-infective implant in bone repair. Int. J. Pharm. 2020, 576, 118941.
|
| [53] |
Zhang, M.C.; Gao, W.C. Research progress on the regulatory mechanisms of macrophages during wound healing. J. Tissue Eng. Reconstruct. Surg. 2019, 15, 204–207.
|
| [54] |
Aldrich, A.; Kuss, M.A.; Duan, B.; Kielian, T. 3D bioprinted scaffolds containing viable macrophages and antibiotics promote clearance of staphylococcus aureus craniotomy-associated biofilm infection. ACS Appl. Mater. Interfaces. 2019, 11, 12298–12307.
|
| [55] |
Gao, X.Y.; Zhang, W.T.; Sun, T.Z.; Zhang, J.; Li, Z.H. The application of metal ions in bone tissue engineering. Chin. J. Tissue Eng. Res. 2024, 28, 439–444.
|
| [56] |
Deng, L.J.; Deng, Y.; Xie, K.N. AgNPs-decorated 3D printed PEEK implant for infection control and bone repair. Colloids Surf. B Biointerfaces. 2017, 160, 483–492.
|
| [57] |
Li, J.Y.; Li, L.L.; Zhou, J.; Zhou, Z.; Wu, X.L.; Wang, L.M.; Yao, Q.Q. 3D printed dual-functional biomaterial with self-assembly micro-nano surface and enriched nano argentum for antibacterial and bone regeneration. Appl. Mater. Today. 2019, 17, 206–215.
|
| [58] |
Zhang, M.Z.; Zhai, X.Y.; Ma, T.F.; Huang, Y.K.; Jin, M.D.; Yang, H.Z.; Fu, H.; Zhang, S.; Sun, T.W.; Jin, X.; Du, Y.P.; Yan, C.H. Sequential therapy for bone regeneration by cerium oxide-reinforced 3D-printed bioactive glass scaffolds. ACS Nano. 2023, 17, 4433–4444.
|
| [59] |
Prajapati, A.R.; Dave, H.K.; Raval, H.K. Impact energy absorption and fracture mechanism of FFF made fiberglass reinforced polymer composites. Rapid Prototyp. J. 2023, 29, 275–287.
|
| [60] |
Hu, X.L.; Chen, J.; Yang, S.H.; Zhang, Z.; Wu, H.M.; He, J.; Qin, L.L.; Cao, J.F.; Xiong, C.D.; Li, K.N.; Liu, X.; Qian, Z.Y. 3D printed multifunctional biomimetic bone scaffold combined with TP-Mg nanoparticles for the infectious bone defects repair. Small. 2024, 20, e2403681.
|
| [61] |
Yang, S.C.; Song, M.G.; Li, X.; Wang, L.Q.; An, Z.D.; Bai, X.; Wei, Z.L.; Gao, Y.H.; Chen, K.M. Research progress of icariin in repairing bone defect and its mechanism of action. Chin. J. Osteoporos. 2024, 30, 720–724, 744.
|
| [62] |
Zhang, X.H.; Li, W.; Yang, W.P.; New; S.Y.R.T. 3D-printed icariin/decalcified bone matrix material promotes the repair of femoral condyle defects in rabbits. Chin. J. Tissue Eng. Res. 2020, 24, 5461–5466.
|
| [63] |
Yeh, C.H.; Chen, Y.-W.; Shie, M.-Y.; Fang, H.Y. Poly(dopamine)-assisted immobilization of xu Duan on 3D printed poly(lactic acid) scaffolds to up-regulate osteogenic and angiogenic markers of bone marrow stem cells. Materials. 2015, 8, 4299–4315.
|
| [64] |
Feng, Y.S.; Zhu, S.J.; Wang, L.G.; Chang, L.; Hou, Y.C.; Guan, S.K. Fabrication and characterization of biodegradable Mg-Zn-Y-Nd-Ag alloy: microstructure, mechanical properties, corrosion behavior and antibacterial activities. Bioact. Mater. 2018, 3, 225–235.
|
| [65] |
Kaliaraj, G.S.; Siva, T.; Ramadoss, A. Surface functionalized bioceramics coated on metallic implants for biomedical and anticorrosion performance–a review. J. Mater. Chem. B. 2021, 9, 9433–9460.
|
| [66] |
Li, Y.; Li, L.T.; Ma, Y.G.; Zhang, K.; Li, G.; Lu, B.; Lu, C.L.; Chen, C.; Wang, L.; Wang, H.; Cui, X. 3D-printed titanium cage with PVA-vancomycin coating prevents surgical site infections (SSIs). Macromol. Biosci. 2020, 20, e1900394.
|
| [67] |
Kodama, J.; Chen, H.F.; Zhou, T.J.; Kushioka, J.; Okada, R.; Tsukazaki, H.; Tateiwa, D.; Nakagawa, S.; Ukon, Y.; Bal, Z.; Tian, H.J.; Zhao, J.; Kaito, T. Antibacterial efficacy of quaternized chitosan coating on 3D printed titanium cage in rat intervertebral disc space. Spine J. 2021, 21, 1217–1228.
|
| [68] |
Chen, Q.; Zhao, X.Y.; Lai, W.J.; Li, Z.; You, D.Q.; Yu, Z.T.; Li, W.; Wang, X.J. Surface functionalization of 3D printed Ti scaffold with Zn-containing mesoporous bioactive glass. Surf. Coat. Technol. 2022, 435, 128236.
|
| [69] |
Sedelnikova, M.B.; Sharkeev, Y.P.; Tolkacheva, T.V.; Uvarkin, P.V.; Chebodaeva, V.V.; Prosolov, K.A.; Bakina, O.V.; Kashin, A.D.; Shcheglova, N.A.; Panchenko, A.A.; Krasovsky, I.B.; Solomatina, M.V.; Efimenko, M.V.; Pavlov, V.V.; Cherdantseva, L.A.; Kirilova, I.A. Additively manufactured porous titanium 3D–scaffolds with antibacterial Zn-, Ag- calcium phosphate biocoatings. Mater. Charact. 2022, 186, 111782.
|
| [70] |
Wu, Y.P.; Shi, X.W.; Wang, J.J.; Li, Y.; Wu, J.; Jia, D.Q.; Bai, Y.; Wu, X.P.; Xu, Y.Q. A surface metal ion-modified 3D-printed Ti-6Al-4V implant with direct and immunoregulatory antibacterial and osteogenic activity. Front. Bioeng. Biotechnol. 2023, 11, 1142264.
|
| [71] |
Lai-Cheong, J.E.; McGrath, J.A. Structure and function of skin, hair and nails. Medicine. 2021, 49, 337–342.
|
| [72] |
Feng, Z.J.; Su, Q.; Zhang, C.N.; Huang, P.S.; Song, H.J.; Dong, A.J.; Kong, D.L.; Wang, W.W. Bioinspired nanofibrous glycopeptide hydrogel dressing for accelerating wound healing: a cytokine-free, M2-type macrophage polarization approach. Adv. Funct. Mater. 2020, 30, 2006454.
|
| [73] |
Arabpour, Z.; Abedi, F.; Salehi, M.; Baharnoori, S.M.; Soleimani, M.; Djalilian, A.R. Hydrogel-based skin regeneration. Int. J. Mol. Sci. 2024, 25, 1982.
|
| [74] |
Wu, Z.; Hong, Y.L. Combination of the silver-ethylene interaction and 3D printing to develop antibacterial superporous hydrogels for wound management. ACS Appl. Mater. Interfaces. 2019, 11, 33734–33747.
|
| [75] |
Teoh, J.H.; Tay, S.M.; Fuh, J.; Wang, C.H. Fabricating scalable, personalized wound dressings with customizable drug loadings via 3D printing. J. Control. Release. 2022, 341, 80–94.
|
| [76] |
Brites, A.; Ferreira, M.; Bom, S.; Grenho, L.; Claudio, R.; Gomes, P.S.; Fernandes, M.H.; Marto, J.; Santos, C. Fabrication of antibacterial and biocompatible 3D printed Manuka-Gelatin based patch for wound healing applications. Int. J. Pharm. 2023, 632, 122541.
|
| [77] |
Shen, H.Y.; Liu, Z.H.; Hong, J.S.; Wu, M.S.; Shiue, S.J.; Lin, H.Y. Controlled-release of free bacteriophage nanoparticles from 3D-plotted hydrogel fibrous structure as potential antibacterial wound dressing. J. Control. Release. 2021, 331, 154–163.
|
| [78] |
Jiang, Q.J.; Yang, F.; Yang, A.D.; Wu, Y.; Lu, W.T.; Lei, S.Y.; Wu, X.L. Research progress of bacteriostatic mechanism of traditional Chinese medicine based on chemical components. Chin. J. Antibiot. 2023, 48, 855–861.
|
| [79] |
Liu, L.; Liu, S.D.; Liu, X.D.; Yang, L.; Ling, C.; Hai, X.M.; Ma, H.M.; Chen, D.M. Oxymatrine hydrogel promotes wound healing by activating the Nrf2/HO-1 pathway in keratinocytes. Chin. J. Tissue Eng. Res. 2024, 28, 4620–4627.
|
| [80] |
Lazaridou, M.; Moroni, S.; Klonos, P.; Kyritsis, A.; Bikiaris, D.N.; Lamprou, D.A. 3D-printed hydrogels based on amphiphilic chitosan derivative loaded with levofloxacin for wound healing applications. Int. J. Polym. Mater. Polym. Biomater. 2025, 74, 67–84.
|
| [81] |
Yang, Z.M.; Ren, X.H.; Liu, Y. N-halamine modified ceria nanoparticles: Antibacterial response and accelerated wound healing application via a 3D printed scaffold. Compos. Part B Eng. 2021, 227, 109390.
|
| [82] |
Cojocaru, E.; Ghitman, J.; Pircalabioru, G.G.; Zaharia, A.; Iovu, H.; Sarbu, A. Electrospun/3D-printed bicomponent scaffold co-loaded with a prodrug and a drug with antibacterial and immunomodulatory properties. Polymers. 2023, 15, 2854.
|
| [83] |
Jiang, Y.H.; Wang, Y.; Li, Q.; Yu, C.; Chu, W.L. Natural polymer-based stimuli-responsive hydrogels. Curr. Med. Chem. 2020, 27, 2631–2657.
|
| [84] |
Nizioł, M.; Paleczny, J.; Junka, A.; Shavandi, A.; Dawiec-Liśniewska, A.; Podstawczyk, D. 3D printing of thermoresponsive hydrogel laden with an antimicrobial agent towards wound healing applications. Bioengineering. 2021, 8, 79.
|
| [85] |
Fan, X.L.; Li, Y.J.; Li, X.M.; Wu, Y.H.; Tang, K.Y.; Liu, J.; Zheng, X.J.; Wan, G.M. Injectable antibacterial cellulose nanofiber/chitosan aerogel with rapid shape recovery for noncompressible hemorrhage. Int. J. Biol. Macromol. 2020, 154, 1185–1193.
|
| [86] |
Hu, X.; Li, H.J.; Guo, W.T.; Xiang, H.Q.; Hao, L.; Ai, F.R.; Sahu, S.; Li, C. Vacuum sealing drainage system combined with an antibacterial jackfruit aerogel wound dressing and 3D printed fixation device for infections of skin soft tissue injuries. J. Mater. Sci. Mater. Med. 2022, 34, 1.
|
| [87] |
Turner, J.G.; Laabei, M.; Li, S.X.; Estrela, P.; Leese, H.S. Antimicrobial releasing hydrogel forming microneedles. Biomater. Adv. 2023, 151, 213467.
|
| [88] |
Erkus, H.; Bedir, T.; Kaya, E.; Tinaz, G.B.; Gunduz, O.; Chifiriuc, M.C.; Ustundag, C.B. Innovative transdermal drug delivery system based on amoxicillin-loaded gelatin methacryloyl microneedles obtained by 3D printing. Materialia. 2023, 27, 101700.
|
| [1] | 李永圆, 谢茂梅, 陈晨, 文有青, 颜月玲, 王海霞. 利用半固体挤压3D打印技术制备两种穿心莲内酯缓释制剂[J]. 中国药学(英文版), 2023, 32(11): 935-946. |
| [2] | 李芮, 徐翔宇, 陈迪, 张悦, 钱浩楠, 臧根奥, 闫光荣, 范田园. 熔融沉积成型3D打印法莫替丁口服脉冲制剂的研究[J]. 中国药学(英文版), 2022, 31(9): 657-664. |
| [3] | 胡连栋1*, 刘慈1, 徐文2. 地克珠利口服制剂在家兔体内的药动学研究[J]. , 2009, 18(3): 273-277. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||