中国药学(英文版) ›› 2021, Vol. 30 ›› Issue (8): 623-633.DOI: 10.5246/jcps.2021.08.050
• 【综述】 • 下一篇
Eric Wei Chiang Chan1,*(), Siu Kuin Wong2, Hung Tuck Chan3
收稿日期:
2020-12-21
修回日期:
2021-01-20
接受日期:
2021-03-12
出版日期:
2021-08-29
发布日期:
2021-08-29
通讯作者:
Eric Wei Chiang Chan
作者简介:
Eric Wei Chiang Chan1,*(), Siu Kuin Wong2, Hung Tuck Chan3
Received:
2020-12-21
Revised:
2021-01-20
Accepted:
2021-03-12
Online:
2021-08-29
Published:
2021-08-29
Contact:
Eric Wei Chiang Chan
About author:
Dr Eric Wei Chiang Chan, Associate Professor at the Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia, obtained his PhD (Natural Product Chemistry) from Monash University Malaysia in 2009. To date, Dr Eric Chan has 92 publications in international refereed journals with 62 (6 in JCPS) as the lead author. His publications have received 1788 citations in Scopus and 3668 citations in Google Scholar. He was one of the Top 5 Competitors of the Elsevier Green and Sustainable Chemistry Challenge 2015, out of 500 proposals submitted globally. In April 2016, he presented his proposal at the Green and Sustainable Chemistry Conference in Berlin, Germany. In the same month, he was awarded the Promising Researcher Award by UCSI University. In December 2019, he attended the Green Chemistry Conference held in University of Auckland, New Zealand. Currently, Dr Eric Chan is Editorial Board Member of Journal of Complementary Medicine Research, and Outreach Science Leader of American Chemical Society (ACS) Malaysia Chapter. He is a Life Member of International Society of Mangrove Ecosystems (ISME), and a Member of Asian Council of Science Editors (ACSE), Pharmacognosy Network Worldwide, and Monash University Chapter of the Golden Key International Honour Society. In October 2020, Dr Eric Chan’s citations were ranked top 2% in the world (Pharmacology and Pharmacy) by a University of Stanford Report. He was Project Overseer of the APEC Sustainable Coastal Cities Symposium in November 2021. |
摘要:
As a dark tea, Pu-erh tea (PET) is produced from sun-dried leaves of Camellia sinensis var. assamica mainly in Yunnan Province of China. Many microorganisms are involved in the fermentation of PET. Among them, Aspergillus niger is most important. It is believed that the longer the preservation period, the better is the quality and taste of PET, which is commercially available as loose, compressed or instant tea leaves. Chemical components of PET include flavones, flavanols, flavonols, phenolic acids, alkaloids and methylxanthines. In this overview, the lipid-lowering and anti-obesity effects of PET were discussed based on animal models and human trials, and our study provided some insights into possible mechanisms of bioactive compounds, such as theabrownin, catechins, lovastatin and gallic acid. Other bioactivities of PET and some information on Fuzhuan brick tea were also included. Sources of information cited were from Google Scholar, PubMed, PubMed Central, Science Direct, J-Stage, PubChem, Directory of Open Access Journals (DOAJ), and China National Knowledge Infrastructure (CNKI).
Supporting:
Eric Wei Chiang Chan, Siu Kuin Wong, Hung Tuck Chan. An overview of Pu-erh tea and its health-promoting effects of lipid-lowering and anti-obesity[J]. 中国药学(英文版), 2021, 30(8): 623-633.
Eric Wei Chiang Chan, Siu Kuin Wong, Hung Tuck Chan. An overview of Pu-erh tea and its health-promoting effects of lipid-lowering and anti-obesity[J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(8): 623-633.
[1] |
Chen, H.Y.; Lin-Shiau, S.Y.; Lin, J.K. Chapter 2 Pu-erh tea: Its manufacture and health benefits, in Tea and Tea Products: Chemistry and Health-Promoting Properties. (Ho, C.T.; Lin, J.K.; Shahidi, F. Eds), CRC Press. 2008, 9–15.
|
[2] |
Sun, Q.; Yan, X.S. History of Pu’er tea and comparative study for the effect of its various extracts on lipid-lowering diet. Pak. J. Pharm, Sci. 2014, 27, 1015–1022.
|
[3] |
Lv, H.P.; Zhu, Y.; Tan, J.F.; Guo, L.; Dai, W.D.; Lin, Z. Bioactive compounds from Pu-erh tea with therapy for hyperlipidaemia. J. Funct. Foods. 2015, 19, 194–203.
|
[4] |
Chen, M.C.; Zhu, Y.J.; Zhang, H.F.; Wang, J.P.; Liu, X.G.; Chen, Z.; Zheng, M.X.; Liu, B. Phenolic compounds and the biological effects of Pu-erh teas with long-term storage. Int. J. Food Prop. 2017, 20, 1715–1728.
|
[5] |
Lv, H.P.; Zhang, Y.J.; Lin, Z.; Liang, Y.R. Processing and chemical constituents of Pu-erh tea: a review. Food Res. Int. 2013, 53, 608–618.
|
[6] |
Zhang, L.; Zhang, Z.Z.; Zhou, Y.B.; Ling, T.J.; Wan, X.C. Chinese dark teas: Postfermentation, chemistry and biological activities. Food Res. Int. 2013, 53, 600–607.
|
[7] |
Chen, Y.S.; Liu, B.L.; Chang, Y.N. Bioactivities and sensory evaluation of Pu-erh teas made from three tea leaves in an improved pile fermentation process. J. Biosci. Bioeng. 2010, 109, 557–563.
|
[8] |
Abe, M.; Takaoka, N.; Idemoto, Y.; Takagi, C.; Imai, T.; Nakasaki, K. Characteristic fungi observed in the fermentation process for Puer tea. Int. J. Food Microbiol. 2008, 124, 199–203.
|
[9] |
Ye, J.; Wang, W.; Li, J.; Guo, X.; Zhao, M.; Jiang, Y.; Tu, P. Influence of the post-fermentation by four Aspergillus strains on the aroma of pu-erh tea. J. Chin. Pharm. Sci. 2016, 25, 284−290.
|
[10] |
Lee, L.K.; Foo, K.Y. Recent advances on the beneficial use and health implications of Pu-erh tea. Food Res. Int. 2013, 53, 619–628.
|
[11] |
Gao, L.; Bian, M.X.; Mi, R.F.; Hu, X.S.; Wu, J.H. Quality identification and evaluation of Pu-erh teas of different grade levels and various ages through sensory evaluation and instrumental analysis. Int. J. Food Sci. Technol. 2016, 51, 1338–1348.
|
[12] |
Lian, M.; Jiang, Y.F.; Lv, S.D.; He, Y.L.; Zhou, J.S.; Meng, Q.X. The anti-obesity effect of instant Pu-erh ripe tea in mice with hydrogenated oil diet-induced obesity. Appl. Mech. Mater. 2014, 644, 5239–5243.
|
[13] |
Lian, M.; Jiang, Y.F.; Lv, S.D.; He, Y.L.; Zhou, J.S.; Meng, Q.X. The effect of instant Pu-erh tea intragastric administration in mice with hydrogenated oil diet-induced obesity. J. Chem. Pharm. 2014, 6, 2025−2030.
|
[14] |
Pedan, V.; Rohn, S.; Holinger, M.; Hühn, T.; Chetschik, I. Bioactive compound fingerprint analysis of aged raw Pu’er tea and young ripened Pu’er tea. Molecules. 2018, 23, 1931.
|
[15] |
Lv, H.P.; Zhang, Y.; Shi, J.; Lin, Z. Phytochemical profiles and antioxidant activities of Chinese dark teas obtained by different processing technologies. Food Res. Int. 2017, 100, 486–493.
|
[16] |
Zhao, H.; Zhang, M.; Zhao, L.; Ge, Y.K.; Sheng, J.; Shi, W. Changes of constituents and activity to apoptosis and cell cycle during fermentation of tea. Int. J. Mol. Sci. 2011, 12, 1862–1875.
|
[17] |
Zuo, Y.; Chen, H.; Deng, Y. Simultaneous determination of catechins, caffeine and gallic acids in green, oolong, black and pu-erh teas using HPLC with a photodiode array detector. Talanta. 2002, 57, 307−316.
|
[18] |
Zhang, L.; Li, N.; Ma, Z.Z.; Tu, P.F. Comparison of the chemical constituents of aged Pu-erh tea, ripened Pu-erh tea, and other teas using HPLC-DAD-ESI-MSn. J. Agric. Food Chem. 2011, 59, 8754–8760.
|
[19] |
Zhang, L.; Tu, P.F. Development of the fingerprints of crude Pu-erh tea and ripened Pu-erh tea by highperformance liquid chromatography. J. Chin. Pharm. Sci. 2011, 20, 352−359.
|
[20] |
Xiong, C.Y.; Peng, Y.J.; Liu, B.Y.; Cui, W.R.; Liu, X.C. Anti-obesity, anti-atherosclerotic and anti-oxidant effects of Pu-erh tea on a high fat diet-induced obese rat model. J. Biosci. Med. 2019, 7, 120–130.
|
[21] |
Wang, Q.P.; Peng, C.X.; Gong, J.S. Effects of enzymatic action on the formation of theabrownin during solid state fermentation of Pu-erh tea. J. Sci. Food Agric. 2011, 91, 2412–2418.
|
[22] |
Sano, M.; Takenaka, Y.; Kojima, R.; Saito, S.; Tomita, I.; Katou, M.; Shibuya, S. Effects of Pu-erh tea on lipid metabolism in rats. Chem. Pharm. Bull. 1986, 34, 221–228.
|
[23] |
Kuo, K.L.; Weng, M.S.; Chiang, C.T.; Tsai, Y.J.; Lin-Shiau, S.Y.; Lin, J.K. Comparative studies on the hypolipidemic and growth suppressive effects of oolong, black, Pu-erh, and green tea leaves in rats. J. Agric. Food Chem. 2005, 53, 480–489.
|
[24] |
Cao, Z.H.; Gu, D.H.; Lin, Q.Y.; Xu, Z.Q.; Huang, Q.C.; Rao, H.; Liu, E.W.; Jia, J.J.; Ge, C.R. Effect of pu-erh tea on body fat and lipid profiles in rats with diet-induced obesity. Phytother. Res. 2011, 25, 234–238.
|
[25] |
Zhou, J.; Xu, Y.Q.; Guo, S.Y.; Li, C.Q. Rapid analysis of hypolipidemic drugs in a live zebrafish assay. J. Pharmacol. Toxicol. Methods. 2015, 72, 47–52.
|
[26] |
Sun, Y.; Wang, Y.W.; Song, P.P.; Wang, H.S.; Xu, N.; Wang, Y.J.; Zhang, Z.Z.; Yue, P.X.; Gao, X.L. Anti-obesity effects of instant fermented teas in vitro and in mice with high-fat-diet-induced obesity. Food Funct. 2019, 10, 3502–3513.
|
[27] |
Huang, H.C.; Lin, J.K. Pu-erh tea, green tea, and black tea suppresses hyperlipidemia, hyperleptinemia and fatty acid synthase through activating AMPK in rats fed a high-fructose diet. Food Funct. 2012, 3, 170–177.
|
[28] |
Cao, Z.H.; Yang, H.; He, Z.L.; Luo, C.; Xu, Z.Q.; Gu, D.H.; Jia, J.J.; Ge, C.R.; Lin, Q.Y. Effects of aqueous extracts of raw pu-erh tea and ripened pu-erh tea on proliferation and differentiation of 3T3-L1 preadipocytes. Phytother. Res. 2013, 27, 1193–1199.
|
[29] |
Lu, X.J.; Liu, J.X.; Zhang, N.S.; Fu, Y.H.; Zhang, Z.C.; Li, Y.X.; Wang, W.Q.; Li, Y.Y.; Shen, P.; Cao, Y.G. Ripened Pu-erh tea extract protects mice from obesity by modulating gut microbiota composition. J. Agric. Food Chem. 2019, 67, 6978–6994.
|
[30] |
Hou, Y.; Shao, W.F.; Xiao, R.; Xu, K.L.; Ma, Z.Z.; Johnstone, B.H.; Du, Y.S. Pu-erh tea aqueous extracts lower atherosclerotic risk factors in a rat hyperlipidemia model. Exp. Gerontol. 2009, 44, 434–439.
|
[31] |
Shimamura, Y.; Yoda, M.; Sakakibara, H.; Matsunaga, K.; Masuda, S. Pu-erh tea suppresses diet-induced body fat accumulation in C57BL/6J mice by down-regulating SREBP-1c and related molecules. Biosci. Biotechnol. Biochem. 2013, 77, 1455–1460.
|
[32] |
Huang, F.; Wang, S.; Zhao, A.; Zheng, X.; Zhang, Y.; Lei, S.; Ge, K.; Qu, C.; Zhao, Q.; Yan, C.; Jia, W. Pu-erh tea regulates fatty acid metabolism in mice under high-fat diet. Front. Pharmacol. 2019, 10, 63.
|
[33] |
Gao, X.Y.; Xie, Q.H.; Kong, P.; Liu, L.; Sun, S.; Xiong, B.Y.; Huang, B.J.; Yan, L.; Sheng, J.; Xiang, H.Y. Polyphenol- and caffeine-rich postfermented Pu-erh tea improves diet-induced metabolic syndrome by remodeling intestinal homeostasis in mice. Infect. Immun. 2018, 86, e00601–17.
|
[34] |
Liu, D.M.; Huang, J.N.; Luo, Y.; Wen, B.B.; Wu, W.L.; Zeng, H.L.; Zhonghua, L. Fuzhuan brick tea attenuates high-fat diet-induced obesity and associated metabolic disorders by shaping gut microbiota. J. Agric. Food Chem. 2019, 67, 13589–13604.
|
[35] |
Feng, W.; Wang, X.Q.; Chen, P.; An, W.W.; Zhang, C.Y.; Li, S.Y.; Yan, Q.; Wang, P.J.; Bai, X.L.; Li, C.W. Pu-erh tea inhibits body mass gain and modulates cytokine profiles of nutritionally obese Sprague-Dawley rats. Food Sci. 2019, 40, 175–181.
|
[36] |
Chiang, C.T.; Weng, M.S.; Lin-Shiau, S.Y.; Kuo, K.L.; Tsai, Y.J.; Lin, J.K. Pu-erh tea supplementation suppresses fatty acid synthase expression in the rat liver through downregulating Akt and JNK signalings as demonstrated in human hepatoma HepG2 cells. Oncol. Res. 2005, 16, 119–128.
|
[37] |
Way, T.D.; Lin, H.Y.; Kuo, D.H.; Tsai, S.J.; Shieh, J.C.; Wu, J.C.; Lee, M.R.; Lin, J.K. Pu-erh tea attenuates hyperlipogenesis and induces hepatoma cells growth arrest through activating AMP-activated protein kinase (AMPK) in human HepG2 cells. J. Agric. Food Chem. 2009, 57, 5257–5264.
|
[38] |
Yamashita, Y.; Wang, L.Q.; Wang, L.H.; Tanaka, Y.; Zhang, T.S.; Ashida, H. Oolong, black and pu-erh tea suppresses adiposity in mice via activation of AMP-activated protein kinase. Food Funct. 2014, 5, 2420–2429.
|
[39] |
Peng, C.X.; Wang, Q.P.; Liu, H.R.; Gao, B.; Sheng, J.; Gong, J.S. Effects of Zijuan pu-erh tea theabrownin on metabolites in hyperlipidemic rat feces by Py-GC/MS. J. Anal. Appl. Pyrolysis. 2013, 104, 226–233.
|
[40] |
Wu, E.K.; Zhang, T.T.; Tan, C.; Peng, C.X.; Chisti, Y.; Wang, Q.P.; Gong, J.S. Theabrownin from Pu-erh tea together with swinging exercise synergistically ameliorates obesity and insulin resistance in rats. Eur. J. Nutr. 2020, 59, 1937–1950.
|
[41] |
Huang, F.; Zheng, X.; Ma, X.; Jiang, R.; Zhou, W.; Zhou, S.; Zhang, Y.; Lei, S.; Wang, S.; Kuang, J.; Han, X. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism. Nat. Commun. 2019, 10, 1−7.
|
[42] |
Gong, J.S.; Peng, C.X.; Chen, T.; Gao, B.; Zhou, H.J. Effects of theabrownin from Pu-erh tea on the metabolism of serum lipids in rats: mechanism of action. J. Food Sci. 2010, 75, H182–H189.
|
[43] |
Lu, C.H.; Hwang, L.S. Polyphenol contents of Pu-Erh teas and their abilities to inhibit cholesterol biosynthesis in Hep G2 cell line. Food Chem. 2008, 111, 67–71.
|
[44] |
Oi, Y.; Hou, I.C.; Fujita, H.; Yazawa, K. Antiobesity effects of Chinese black tea (Pu-erh tea) extract and Gallic acid. Phytother. Res. 2012, 26, 475–481.
|
[45] |
Hwang, L.S., Lin, L.C.; Chen, N.T.; Liuchang, H.C.; Shiao, M.S. Hypolipidemic effect and antiatherogenic potential of Pu-erh tea. ACS Symp. Ser. 2003, 859, 87–103.
|
[46] |
Yang, D.J.; Hwang, L.S. Study on the conversion of three natural statins from lactone forms to their corresponding hydroxy acid forms and their determination in Pu-Erh tea. J. Chromatogr. A. 2006, 1119, 277–284.
|
[47] |
Zhao, Z.J.; Pan, Y.Z.; Liu, Q.J.; Li, X.H. Exposure assessment of lovastatin in Pu-erh tea. Int. J. Food Microbiol. 2013, 164, 26–31.
|
[48] |
Ying, J.; Du, L.D.; Du, G.H. Lovastatin. Nat. Small Mol. Drugs Plants. 2018, 93−99.
|
[49] |
Fujita, H.; Yamagami, T. Antihypercholesterolemic effect of Chinese black tea extract in human subjects with borderline hypercholesterolemia. Nutr. Res. 2008, 28, 450–456.
|
[50] |
Kubota, K.; Sumi, S.; Tojo, H.; Sumi-Inoue, Y.; I-Chin, H.; Oi, Y.; Fujita, H.; Urata, H. Improvements of mean body mass index and body weight in preobese and overweight Japanese adults with black Chinese tea (Pu-Erh) water extract. Nutr. Res. 2011, 31, 421–428.
|
[51] |
Jensen, G.; Beaman, J.; He, Y.; Guo, J.; Sun, H. Reduction of body fat and improved lipid profile associated with daily consumption of a Puer tea extract in a hyperlipidemic population: a randomized placebo-controlled trial. Clin. Interv. Aging. 2016, 367.
|
[52] |
Zhang, H.; Wang, C.; Shen, S.; Wang, G.; Liu, P.; Liu, Z.; Wang, Y.; Du, S.; Liu, Z.; Deng, Z. Antioxidant phenolic compounds from Pu-erh tea. Molecules. 2012, 17, 14037–14045.
|
[53] |
Wu, S.C.; Yen, G.C.; Wang, B.S.; Chiu, C.K.; Yen, W.J.; Chang, L.W.; Duh, P.D. Antimutagenic and antimicrobial activities of pu-erh tea. LWT-Food Sci. Technol. 2007, 40, 506–512.
|
[54] |
Zhao, L.J.; Jia, S.T.; Tang, W.R.; Sheng, J.; Luo, Y. Pu-erh tea inhibits tumor cell growth by down-regulating mutant p53. Int. J. Mol. Sci. 2011, 12, 7581–7593.
|
[55] |
Zhao, X.; Song, J.L.; Kim, J.D.; Lee, J.S.; Park, K.Y. Fermented Pu-erh tea increases in vitro anticancer activities in HT-29 cells and has antiangiogenetic effects on HUVECs. J. Environ. Pathol. Toxicol. Oncol. 2013, 32, 275–288.
|
[56] |
Xie, J.; Yu, H.S.; Song, S.; Fang, C.Y.; Wang, X.J.; Bai, Z.B.; Ma, X.; Hao, S.M.; Zhao, H.Y.; Sheng, J. Pu-erh tea water extract mediates cell cycle arrest and apoptosis in MDA-MB-231 human breast cancer cells. Front. Pharmacol. 2017, 8, 190.
|
[57] |
Armstrong, L.; Araújo Vieira do Carmo, M.; Wu, Y.; Antônio Esmerino, L.; Azevedo, L.; Zhang, L.; Granato, D. Optimizing the extraction of bioactive compounds from pu-erh tea (Camellia sinensis var. assamica) and evaluation of antioxidant, cytotoxic, antimicrobial, antihemolytic, and inhibition of α-amylase and α-glucosidase activities. Food Res. Int. 2020, 137, 109430.
|
[58] |
Yan, S.J.; Wang, L.; Li, Z.; Zhu, D.N.; Guo, S.C.; Xin, W.F.; Yang, Y.F.; Cong, X.; Ma, T.; Shen, P.P.; Sheng, J.; Zhang, W.S. Inhibition of advanced glycation end product formation by Pu-erh tea ameliorates progression of experimental diabetic nephropathy. J. Agric. Food Chem. 2012, 60, 4102–4110.
|
[59] |
Ding, Q.Z.; Zheng, W.; Zhang, B.W.; Chen, X.J.; Zhang, J.; Pang, X.; Zhang, Y.; Jia, D.X.; Pei, S.R.; Dong, Y.S.; Ma, B.P. Comparison of hypoglycemic effects of ripened pu-erh tea and raw pu-erh tea in streptozotocin-induced diabetic rats. RSC Adv. 2019, 9, 2967–2977.
|
[60] |
Huang, N.; Yang, L.M.; Li, X.L.; Zheng, C.B.; Wang, R.R.; Yang, Y.P.; Zheng, Y.T. Anti-HIV activities of extracts from Pu-erh tea. Chin. J. Nat. Med. 2012, 10, 347–352.
|
[61] |
Bonte, F.; Ulrichova, J.; Saladin, R. Skin anti-aging and detoxifying properties of ancient tea forest Pu-erh tea. Free Radic. Biol. Med. 2016, 100, S80.
|
[62] |
Li, C.J.; Chai, S.M.; Ju, Y.Z.; Hou, L.; Zhao, H.; Ma, W.; Li, T.; Sheng, J.; Shi, W. Pu-erh tea protects the nervous system by inhibiting the expression of metabotropic glutamate receptor 5. Mol. Neurobiol. 2017, 54, 5286–5299.
|
[63] |
Duh, P.D.; Wang, B.S.; Liou, S.J.; Lin, C.J. Cytoprotective effects of pu-erh tea on hepatotoxicity in vitro and in vivo induced by tert-butyl-hydroperoxide. Food Chem. 2010, 119, 580–585.
|
[64] |
Wang, B.S.; Yu, H.M.; Chang, L.W.; Yen, W.J.; Duh, P.D. Protective effects of pu-erh tea on LDL oxidation and nitric oxide generation in macrophage cells. LWT-Food Sci. Technol. 2008, 41, 1122–1132.
|
[65] |
Hou, I.C.; Oi, Y.; Fujita, H.; Yano, Y.; Fukami, H.; Yoshikawa, M. A hair growth-promoting effect of Chinese black tea extract in mice. Biosci. Biotechnol. Biochem. 2013, 77, 1606–1607.
|
[66] |
Liu, T.T.; Ding, S.H.; Yin, D.; Cuan, X.D.; Xie, C.Q.; Xu, H.H.; Wang, X.J.; Sheng, J. Pu-erh tea extract ameliorates ovariectomy-induced osteoporosis in rats and suppresses osteoclastogenesis in vitro. Front. Pharmacol. 2017, 8, 324.
|
[67] |
Luo, D.; Chen, X.J.; Zhu, X.; Liu, S.; Li, J.; Xu, J.P.; Zhao, J.H.; Ji, X. Pu-erh tea relaxes the thoracic aorta of rats by reducing intracellular calcium. Front. Pharmacol. 2019, 10, 1430.
|
[68] |
Du, W.H.; Peng, S.M.; Liu, Z.H.; Shi, L.; Tan, L.F.; Zou, X.Q. Hypoglycemic effect of the water extract of Pu-erh tea. J. Agric. Food Chem. 2012, 60, 10126–10132.
|
[69] |
Xiong, C.Y.; Peng, Y.J.; Liu, B.Y.; Cui, W.R.; Liu, X.C. Anti-obesity, anti-atherosclerotic and anti-oxidant effects of Pu-erh tea on a high fat diet-induced obese rat model. J. Biosci. Med. 2019, 7, 120–130.
|
[70] |
Zhao, R.; Chen, D.; Wu, H.L. Pu-erh ripened tea resists to hyperuricemia through xanthine oxidase and renal urate transporters in hyperuricemic mice. J. Funct. Foods. 2017, 29, 201–207.
|
[71] |
Wang, D.; Luo, X.; Zhong, Y.; Yang, W.; Xu, M.J.; Liu, Y.; Meng, J.; Yao, P.; Yan, H.; Liu, L.G. Pu-erh black tea extract supplementation attenuates the oxidative DNA damage and oxidative stress in Sprague-Dawley rats with renal dysfunction induced by subchronic 3-methyl-2-quinoxalin benzenevinylketo-1, 4-dioxide exposure. Food Chem. Toxicol. 2012, 50, 147–154.
|
[72] |
Zheng, W.J.; Wan, X.C.; Bao, G.H. Brick dark tea: a review of the manufacture, chemical constituents and bioconversion of the major chemical components during fermentation. Phytochem. Rev. 2015, 14, 499–523.
|
[73] |
Ling, T.J.; Wan, X.C.; Ling, W.W.; Zhang, Z.Z.; Xia, T.; Li, D.X.; Hou, R.Y. New triterpenoids and other constituents from a special microbial-fermented tea: fuzhuan brick tea. J. Agric. Food Chem. 2010, 58, 4945–4950.
|
[74] |
Kang, D.D.; Su, M.; Duan, Y.W.; Huang, Y. Eurotium cristatum, a potential probiotic fungus from Fuzhuan brick tea, alleviated obesity in mice by modulating gut microbiota. Food Funct. 2019, 10, 5032–5045.
|
[75] |
Xiao, Y.; Zhong, K.; Bai, J.R.; Wu, Y.P.; Zhang, J.Q.; Gao, H. The biochemical characteristics of a novel fermented loose tea by Eurotium cristatum (MF800948) and its hypolipidemic activity in a zebrafish model. LWT. 2020, 117, 108629.
|
[76] |
Li, Q.; Liu, Z.H.; Huang, J.N.; Luo, G.A.; Liang, Q.L.; Wang, D.; Ye, X.Y.; Wu, C.B.; Wang, L.L.; Hu, J.H. Anti-obesity and hypolipidemic effects of Fuzhuan brick tea water extract in high-fat diet-induced obese rats. J. Sci. Food Agric. 2013, 93, 1310–1316.
|
[77] |
Chen, G.J.; Xie, M.H.; Dai, Z.Q.; Wan, P.; Ye, H.; Zeng, X.X.; Sun, Y. Kudingcha and fuzhuan brick tea prevent obesity and modulate gut microbiota in high-fat diet fed mice. Mol. Nutr. Food Res. 2018, 62, 1700485.
|
[78] |
Liu, D.M.; Huang, J.N.; Luo, Y.; Wen, B.B.; Wu, W.L.; Zeng, H.L.; Zhonghua, L. Fuzhuan brick tea attenuates high-fat diet-induced obesity and associated metabolic disorders by shaping gut microbiota. J. Agric. Food Chem. 2019, 67, 13589–13604.
|
[79] |
Jing, N.N.; Liu, X.X.; Jin, M.L.; Yang, X.B.; Hu, X.; Li, C.Y.; Zhao, K. Fubrick tea attenuates high-fat diet induced fat deposition and metabolic disorder by regulating gut microbiota and caffeine metabolism. Food Funct. 2020, 11, 6971–6986.
|
[80] |
Fu, D.H.; Ryan, E.P.; Huang, J.N.; Liu, Z.H.; Weir, T.L.; Snook, R.L.; Ryan, T.P. Fermented Camellia sinensis, Fu Zhuan tea, regulates hyperlipidemia and transcription factors involved in lipid catabolism. Food Res. Int. 2011, 44, 2999–3005.
|
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||