[1] |
Sinha, A.K.; Anand, S.; Ortel, B.J.; Chang, Y.; Mai, Z.; Hasan, T.; Maytin, E.V. Methotrexate used in combination with aminolaevulinic acid for photodynamic killing of prostate cancer cells. Br. J. Cancer. 2006, 95, 485–495.
|
[2] |
Jiang, R.Q.; Mei, S.H.; Zhao, Z.G. Leucovorin (folinic acid) rescue for high-dose methotrexate: a review. J. Clin. Pharm. Ther. 2022, 47, 1452–1460.
|
[3] |
Jolivet, J.; Cowan, K.H.; Curt, G.A.; Clendeninn, N.J.; Chabner, B.A. The pharmacology and clinical use of methotrexate. N. Engl. J. Med. 1983, 309, 1094–1104.
|
[4] |
Howard, S.C.; McCormick, J.; Pui, C.H.; Buddington, R.K.; Donald Harvey, R. Preventing and managing toxicities of high-dose methotrexate. Oncologist. 2016, 21, 1471–1482.
|
[5] |
Csordas, K.; Hegyi, M.; Eipel, O.T.; Muller, J.; Erdelyi, D.J.; Kovacs, G.T. Comparison of pharmacokinetics and toxicity after high-dose methotrexate treatments in children with acute lymphoblastic leukemia. Anti Cancer Drugs. 2013, 24, 189–197.
|
[6] |
Wang, A.; Cirrone, F.; De Los Reyes, F.A.; Papadopoulos, J.; Saint Fleur-Lominy, S.; Xiang, E. High-dose methotrexate dosing strategy in primary central nervous system lymphoma. Leuk. Lymphoma. 2022, 63, 1348–1355.
|
[7] |
Abe, K.; Higurashi, T.; Takahashi, M.; Maeda-Minami, A.; Kawano, Y.; Miyazaki, S.; Mano, Y. Concomitant use of high-dose methotrexate and glycyrrhizin affects pharmacokinetics of methotrexate, resulting in hepatic toxicity. In Vivo. 2021, 35, 2163–2169.
|
[8] |
Li, M.; Kong, X.Y.; Wang, S.M. Risk factors for delayed methotrexate elimination in pediatric patients with hematological malignancies: a retrospective analysis. J. Chin. Pharm. Sci. 2022, 31, 746–754.
|
[9] |
Bouquié, R.; Grégoire, M.; Hernando, H.; Azoulay, C.; Dailly, E.; Monteil-Ganière, C.; Pineau, A.; Deslandes, G.; Jolliet, P. Evaluation of a methotrexate chemiluminescent microparticle immunoassay: comparison to fluorescence polarization immunoassay and liquid chromatography-tandem mass spectrometry. Am. J. Clin. Pathol. 2016, 146, 119–124.
|
[10] |
Aumente, M.D.; López-Santamaría, J.; Donoso-Rengifo, M.C.; Reyes-Torres, I.; Montejano Hervás, P. Evaluation of the novel methotrexate architect chemiluminescent immunoassay: clinical impact on pharmacokinetic monitoring. Ther. Drug Monit. 2017, 39, 492–498.
|
[11] |
Fang, S.P.; Lollo, C.P.; Derunes, C.; LaBarre, M.J. Development and validation of a liquid chromatography method for simultaneous determination of three process-related impurities: yeastolates, triton X-100 and methotrexate. J. Chromatogr. B. 2011, 879, 3612–3619.
|
[12] |
Wu, D.; Wang, Y.X.; Sun, Y.; Ouyang, N.; Qian, J. A simple, rapid and reliable liquid chromatography-mass spectrometry method for determination of methotrexate in human plasma and its application to therapeutic drug monitoring. Biomed. Chromatogr. 2015, 29, 1197–1202.
|
[13] |
Rodin, I.; Braun, A.; Stavrianidi, A.; Shpigun, O. A validated LC–MS/MS method for rapid determination of methotrexate in human saliva and its application to an excretion evaluation study. J. Chromatogr. B. 2013, 937, 1–6.
|
[14] |
Rule, G.; Chapple, M.; Henion, J. A 384-well solid-phase extraction for LC/MS/MS determination of methotrexate and its 7-hydroxy metabolite in human urine and plasma. Anal. Chem. 2001, 73, 439–443.
|
[15] |
Guo, P.; Wang, X.M.; Liu, L.S.; Belinsky, M.G.; Kruh, G.D.; Gallo, J.M. Determination of methotrexate and its major metabolite 7-hydroxymethotrexate in mouse plasma and brain tissue by liquid chromatography-tandem mass spectrometry. J. Pharm. Biomed. Anal. 2007, 43, 1789–1795.
|
[16] |
McTaggart, M.P.; Keevil, B.G. A rapid LC-MS/MS assay for the measurement of serum methotrexate in patients who have received high doses for chemotherapy. Ann. Clin. Biochem. 2021, 58, 599–604.
|
[17] |
Hu, Q.Y.; Hou, H. Appendix D: Guidance for industry: Bioanalytical method validation. Food and Drug Administration. 2018.
|
[18] |
EMEA. Committee for Medicinal Products for human use. Guideline on bioanalytical method validation. European Medicines Agency. 2011.
|
[19] |
Fotoohi, K.; Skärby, T.; Söderhäll, S.; Peterson, C.; Albertioni, F. Interference of 7-hydroxymethotrexate with the determination of methotrexate in plasma samples from children with acute lymphoblastic leukemia employing routine clinical assays. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2005, 817, 139–144.
|
[20] |
Wilson, J.F.; Tsanaclis, L.M.; Barnett, K. External quality assessment of syva emit and Abbott TDx II assays for methotrexate in serum. Ther. Drug Monit. 1996, 18, 721–723.
|
[21] |
Albertioni, F.; Rask, C.; Eksborg, S.; Poulsen, J.H.; Pettersson, B.; Beck, O.; Schroeder, H.; Peterson, C. Evaluation of clinical assays for measuring high-dose methotrexate in plasma. Clin. Chem. 1996, 42, 39–44.
|
[22] |
Guerriero, E.; Simon, N.; Nelken, B.; Baldeyrou, B.; Djobo, B.; Vasseur, M.; Allorge, D.; Décaudin, B.; Odou, P. Unexpected overestimation of methotrexate plasma concentrations: analysis of a single center pediatric population. Ther. Drug Monit. 2014, 36, 499–504.
|
[23] |
Kaneko, T.; Fujioka, T.; Suzuki, Y.; Sato, Y.; Itoh, H. Performance characteristics between TDx®FLx and TBATM-25FR for the therapeutic drug monitoring of methotrexate. J. Pharm. Health Care Sci. 2016, 2, 7.
|
[24] |
Aumente, M.D.; López-Santamaría, J.; Donoso-Rengifo, M.C.; Reyes-Torres, I.; Montejano Hervás, P. Evaluation of the novel methotrexate architect chemiluminescent immunoassay: clinical impact on pharmacokinetic monitoring. Ther. Drug Monit. 2017, 39, 492–498.
|
[25] |
Descoeur, J.; Dupuy, A.M.; Bargnoux, A.S.; Cristol, J.P.; Mathieu, O. Comparison of four immunoassays to an HPLC method for the therapeutic drug monitoring of methotrexate: Influence of the hydroxylated metabolite levels and impact on clinical threshold. J. Oncol. Pharm. Pract. 2022, 28, 55–63.
|