[1] |
World Health Organization. Global Tuberculosis Report 2022. Geneva: World Health Organization, 2022. This article can be found online at https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022.
|
[2] |
Andres, S.; Merker, M.; Heyckendorf, J.; Kalsdorf, B.; Rumetshofer, R.; Indra, A.; Hofmann-Thiel, S.; Hoffmann, H.; Lange, C.; Niemann, S.; Maurer, F.P. Bedaquiline-resistant tuberculosis: dark clouds on the horizon. Am. J. Respir. Crit. Care Med. 2020, 201, 1564–1568.
|
[3] |
Nimmo, C.; Millard, J.; Brien, K.; Moodley, S.; van Dorp, L.; Lutchminarain, K.; Wolf, A.; Grant, A.D.; Balloux, F.; Pym, A.S.; Padayatchi, N.; O'Donnell, M. Bedaquiline resistance in drug-resistant tuberculosis HIV co-infected patients. Eur. Respir. J. 2020, 55, 1902383.
|
[4] |
Polsfuss, S.; Hofmann-Thiel, S.; Merker, M.; Krieger, D.; Niemann, S.; Rüssmann, H.; Schönfeld, N.; Hoffmann, H.; Kranzer, K. Emergence of low-level delamanid and bedaquiline resistance during extremely drug-resistant tuberculosis treatment. Clin. Infect. Dis. 2019, 69, 1229–1231.
|
[5] |
Singh, R.; Dwivedi, S.P.; Gaharwar, U.S.; Meena, R.; Rajamani, P.; Prasad, T. Recent updates on drug resistance in Mycobacterium tuberculosis. J. Appl. Microbiol. 2020, 128, 1547–1567.
|
[6] |
Pushkaran, A.C.; Vinod, V.; Vanuopadath, M.; Nair, S.S.; Nair, S.V.; Vasudevan, A.K.; Biswas, R.; Mohan, C.G. Combination of repurposed drug diosmin with amoxicillin-clavulanic acid causes synergistic inhibition of mycobacterial growth. Sci. Rep. 2019, 9, 6800.
|
[7] |
Nawaz, N.; Wen, S.; Wang, F.H.; Nawaz, S.; Raza, J.; Iftikhar, M.; Usman, M. Lysozyme and its application as antibacterial agent in food industry. Molecules. 2022, 27, 6305.
|
[8] |
Aguilar-Pérez, C.; Gracia, B.; Rodrigues, L.; Vitoria, A.; Cebrián, R.; Deboosère, N.; Song, O.R.; Brodin, P.; Maqueda, M.; Aínsa, J.A. Synergy between circular bacteriocin AS-48 and ethambutol against Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2018, 62, e00359–18.
|
[9] |
Song, L.L.; Wu, X.Q. Development of efflux pump inhibitors in antituberculosis therapy. Int. J. Antimicrob. Agents. 2016, 47, 421–429.
|
[10] |
Pule, C.M.; Sampson, S.L.; Warren, R.M.; Black, P.A.; van Helden, P.D.; Victor, T.C.; Louw, G.E. Efflux pump inhibitors: targeting mycobacterial efflux systems to enhance TB therapy. J. Antimicrob. Chemother. 2016, 71, 17–26.
|
[11] |
Chen, C.; Gardete, S.; Jansen, R.S.; Shetty, A.; Dick, T.; Rhee, K.Y.; Dartois, V. Verapamil targets membrane energetics in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2018, 62, e02107–e02117.
|
[12] |
Adams, K.N.; Szumowski, J.D.; Ramakrishnan, L. Verapamil, and its metabolite norverapamil, inhibit macrophage-induced, bacterial efflux pump-mediated tolerance to multiple anti-tubercular drugs. J. Infect. Dis. 2014, 210, 456–466.
|
[13] |
de Souza, J.V.P.; Murase, L.S.; Caleffi-Ferracioli, K.R.; Palomo, C.T.; de Lima Scodro, R.B.; Siqueira, V.L.D.; Pavan, F.R.; Cardoso, R.F. Isoniazid and verapamil modulatory activity and efflux pump gene expression in Mycobacterium tuberculosis. Int. J. Tuberc. Lung Dis. 2020, 24, 591–596.
|
[14] |
Valıyeva, G.; Durupınar, B.; Coban, A.Y. Efflux pump effects on Mycobacterium tuberculosis drug resistance. J. Chemother. 2023, 35, 601–609.
|
[15] |
Singh, M.; Jadaun, G.P.S.; Ramdas, Srivastava, K.; Chauhan, V.; Mishra, R.; Gupta, K.; Nair, S.; Chauhan, D.S.; Sharma, V.D.; Venkatesan, K.; Katoch, V.M. Effect of efflux pump inhibitors on drug susceptibility of ofloxacin resistant Mycobacterium tuberculosis isolates. Indian J. Med. Res. 2011, 133, 535–540.
|
[16] |
Jain, A.; Jaiswal, I.; Verma, S.K.; Singh, P.; Kant, S.; Singh, M. Effect of efflux pump inhibitors on the susceptibility of Mycobacterium tuberculosis to isoniazid. Lung India. 2017, 34, 499–505.
|
[17] |
Hegeto, L.A.; Caleffi-Ferracioli, K.R.; Nakamura-Vasconcelos, S.S.; de Almeida, A.L.; Baldin, V.P.; Nakamura, C.V.; Siqueira, V.L.D.; Scodro, R.B.L.; Cardoso, R.F. In vitro combinatory activity of piperine and anti-tuberculosis drugs in Mycobacterium tuberculosis. Tuberculosis. 2018, 111, 35–40.
|
[18] |
Lentz, F.; Reiling, N.; Spengler, G.; Kincses, A.; Csonka, A.; Molnár, J.; Hilgeroth, A. Dually acting nonclassical 1,4-dihydropyridines promote the anti-tuberculosis (Tb) activities of clofazimine. Molecules. 2019, 24, 2873.
|
[19] |
Halicki, P.C.B.; Vianna, J.S.; Zanatta, N.; de Andrade, V.P.; de Oliveira, M.; Mateus, M.; da Silva, M.V.; Rodrigues, V.; Ramos, D.F.; Almeida da Silva, P.E. 2, 2, 2-trifluoro-1-(1, 4, 5, 6-tetrahydropyridin-3-yl)ethanone derivative as efflux pump inhibitor in Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett. 2021, 42, 128088.
|
[20] |
Kumar, M.; Singh, K.; Naran, K.; Hamzabegovic, F.; Hoft, D.F.; Warner, D.F.; Ruminski, P.; Abate, G.; Chibale, K. Design, synthesis, and evaluation of novel hybrid efflux pump inhibitors for use against Mycobacterium tuberculosis. ACS Infect. Dis. 2016, 2, 714–725.
|
[21] |
Xiao, C.L. Establishment and application of the screening model of the Mycobacterium tuberculosis β-lactamase BlaC inhibitors. J. Chin. Pharm. Sci. 2016, 25, 189–195.
|
[22] |
Flores Anthony, R.; Parsons Linda, M.; Pavelka Martin, S. Genetic analysis of the beta-lactamases of Mycobacterium tuberculosis and Mycobacterium smegmatis and susceptibility to beta-lactam antibiotics. Microbiol. Read. Engl. 2005, 151, 521–532.
|
[23] |
Hugonnet, J.E.; Tremblay, L.W.; Boshoff, H.I.; Barry, C.E.; Blanchard, J.S. Meropenem-clavulanate is effective against extensively drug-resistant Mycobacterium tuberculosis. Science. 2009, 323, 1215–1218.
|
[24] |
Han, J.X; Liu, Y.S.; Xiao, C.L. Research progress of β-lactamase inhibitors. Chin. J. Antibio. 2019, 44, 647–653.
|
[25] |
Payen, M.C.; Muylle, I.; Vandenberg, O.; Mathys, V.; Delforge, M.; Van den Wijngaert, S.; Clumeck, N.; De Wit, S. Meropenem-clavulanate for drug-resistant tuberculosis: a follow-up of relapse-free cases. Int. J. Tuberc. Lung Dis. 2018, 22, 34–39.
|
[26] |
Li, F.; Wang, R.B.; Xiao, T.Y.; Liu, H.; Jiang, Y.; Wan, K.L. Sensitivity analysis of Mycobacterium tuberculosis to β-lactamase inhibitors with tebipenem. Dis. Surveil. 2018, 33, 241–245.
|
[27] |
Shi, J.; Zheng, D.W.; Ma, X.G.; Su, R.Y.; Zhu, Y.K.; Wang, S.H.; Chang, W.J.; Sun, G.Q.; Sun, D.Y. In vitro activity of β-lactamase inhibitors avibanvctam and relebactam in combination with β-lactams against multidrug-resistant Mycobacterium tuberculosis and mutations of resistance genes. Chin. J. Tuberc. Respir. Dis. 2023, 46, 797–805.
|
[28] |
Yan, F.; He, S.G.; Han, X.Y.; Wang, J.Y.; Tian, X.G.; Wang, C.; James, T.D.; Cui, J.N.; Ma, X.C.; Feng, L. High-throughput fluorescent screening of β-lactamase inhibitors to improve antibiotic treatment strategies for tuberculosis. Biosens. Bioelectron. 2022, 216, 114606.
|
[29] |
Jeon, A.B.; Obregón-Henao, A.; Ackart, D.F.; Podell, B.K.; Belardinelli, J.M.; Jackson, M.; Nguyen, T.V.; Blackledge, M.S.; Melander, R.J.; Melander, C.; Johnson, B.K.; Abramovitch, R.B.; Basaraba, R.J. 2-Aminoimidazoles potentiate β-lactam antimicrobial activity against Mycobacterium tuberculosis by reducing β-lactamase secretion and increasing cell envelope permeability. PLoS One. 2017, 12, e0180925.
|
[30] |
Xiao, S.Q.; Guo, H.D.; Weiner, W.S.; Maddox, C.; Mao, C.H.; Gunosewoyo, H.; Pelly, S.; White, E.L.; Rasmussen, L.; Schoenen, F.J.; Aubé, J.; Bishai, W.R.; Lun, S.C. Revisiting the β-lactams for tuberculosis therapy with a compound-compound synthetic lethality approach. Antimicrob. Agents Chemother. 2019, 63, e01319–19.
|