Journal of Chinese Pharmaceutical Sciences ›› 2023, Vol. 32 ›› Issue (6): 478-486.DOI: 10.5246/jcps.2023.06.041
• Original articles • Previous Articles Next Articles
Han Wang1,#, Fanglong Li1,#, Aga Er-bu2,#, Xiaoxia Liang1,*(), Geng Sang3, Car Rangnanjia3
Received:
2022-11-29
Revised:
2022-12-09
Accepted:
2023-01-17
Online:
2023-07-01
Published:
2023-07-01
Contact:
Xiaoxia Liang
About author:
Supporting:
Han Wang, Fanglong Li, Aga Er-bu, Xiaoxia Liang, Geng Sang, Car Rangnanjia. The in vitro antioxidant activities of the ethanol extract and its different polar fractions from Ephedra saxatilis Royle ex Florin in Tibet[J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(6): 478-486.
[1] |
Liang, S.; Meng, X.H.; Wang, Z.; Liu, J.L.; Kuang, Q.H. Polysaccharide from Ephedra sinica Stapf inhibits inflammation expression by regulating Factor-beta1/Smad2 signaling. Int. J. Biol. Macromol. 2018, 106, 947–954.
|
[2] |
González-Juárez, D.E.; Escobedo-Moratilla, A.; Flores, J.; Hidalgo-Figueroa, S.; Martínez-Tagüeña, N.; Morales-Jiménez, J.; Muñiz-Ramírez, A.; Pastor-Palacios, G.; Pérez-Miranda, S.; Ramírez-Hernández, A.; Trujillo, J.; Bautista, E. A review of the ephedra genus: distribution, ecology, ethnobotany, phytochemistry and pharmacological properties. Molecules. 2020, 25, E3283.
|
[3] |
Kallassy, H.; Fayyad-Kazan, M.; Makki, R.; El-Makhour, Y.; Rammal, H.; Leger, D.Y.; Sol, V.; Fayyad-Kazan, H.; Liagre, B.; Badran, B. Chemical composition and antioxidant, anti-inflammatory, and antiproliferative activities of Lebanese ephedra Campylopoda plant. Med. Sci. Monit. Basic Res. 2017, 23, 313–325.
|
[4] |
Ezzatzadeh, E. Comparative evaluation of antioxidant and antimicrobial activity of crude extract and secondary metabolites isolated from Artemisia kulbadica. Asian Pac. J. Trop. Dis. 2012, 2, S431–S434.
|
[5] |
Osman, A.M. Multiple pathways of the reaction of 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) with (+)-catechin: evidence for the formation of a covalent adduct between DPPH and the oxidized form of the polyphenol. Biochem. Biophys. Res. Commun. 2011, 412, 473–478.
|
[6] |
Parsaeimehr, A.; Sargsyan, E.; Javidnia, K. A comparative study of the antibacterial, antifungal and antioxidant activity and total content of phenolic compounds of cell cultures and wild plants of three endemic species of Ephedra. Molecules. 2010, 15, 1668–1678.
|
[7] |
Kosakowska, O.; Bączek, K.; Przybył, J.L.; Pióro-Jabrucka, E.; Czupa, W.; Synowiec, A.; Gniewosz, M.; Costa, R.; Mondello, L.; Węglarz, Z. Antioxidant and antibacterial activity of roseroot (rhodiola rosea L.) dry extracts. Molecules. 2018, 23, E1767.
|
[8] |
Sist, P.; Tramer, F.; Lorenzon, P.; Urbani, R.; Vrhovsek, U.; Bernareggi, A.; Sciancalepore, M. Rhodiola rosea, a protective antioxidant for intense physical exercise: An in vitro study. J. Funct. Foods. 2018, 48, 27–36.
|
[9] |
Shao, Z.H.; Xie, J.T.; Vanden Hoek, T.L.; Mehendale, S.; Aung, H.; Li, C.Q.; Qin, Y.; Schumacker, P.T.; Becker, L.B.; Yuan, C.S. Antioxidant effects of American ginseng berry extract in cardiomyocytes exposed to acute oxidant stress. Biochim. Biophys. Acta. 2004, 1670, 165–171.
|
[10] |
Yu, X.; Yang, X.; Cui, B.; Wang, L.; Ren, B. Antioxidant and immunoregulatory activity of alkali-extractable polysaccharides from North American ginseng. Int. J. Biol. Macromol. 2014, 65, 357–361.
|
[11] |
Xie, J.T.; Wang, C.Z.; Li, X.L.; Ni, M.; Fishbein, A.; Yuan, C.S. Anti-diabetic effect of American ginseng may not be linked to antioxidant activity: comparison between American ginseng and Scutellaria baicalensis using an ob/ob mice model. Fitoterapia. 2009, 80, 306–311.
|
[12] |
Serafini, M. The role of antioxidants in disease prevention. Medicine. 2006, 34, 533–535.
|
[13] |
Bennett, L.L.; Rojas, S.; Seefeldt, T. Role of Antioxidants in the Prevention of Cancer. J. Exp. Med. 2012, 4, 215–222.
|
[14] |
Gordon, M. Dietary antioxidants in disease prevention. Nat. Prod. Rep. 1996, 13, 265–273.
|
[15] |
Akhtar, N.; Ihsan H.; Mirza, B. Phytochemical analysis and comprehensive evaluation of antimicrobial and antioxidant properties of 61 medicinal plant species. Arab. J. Chem. 2018, 11, 1223–1235.
|
[16] |
María, R.; Shirley, M.; Xavier, C.; Jaime, S.; David, V.; Rosa, S.; Jodie, D. Preliminary phytochemical screening, total phenolic content and antibacterial activity of thirteen native species from Guayas province Ecuador. J. King Saud Univ. Sci. 2018, 30, 500–505.
|
[17] |
Olivier, M.T.; Muganza, F.M.; Shai, L.J.; Gololo, S.S.; Nemutavhanani L.D. Phytochemical screening, antioxidant and antibacterial activities of ethanol extracts of Asparagus suaveolens aerial parts. S. Afr. J. Bot. 2017, 108, 41–46.
|
[18] |
Lin, J.Y.; Tang, C.Y. Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chem. 2007, 101, 140–147.
|
[19] |
Tonelli, A.; Candiani, A.; Sozzi, M.; Zucchelli, A.; Foresti, R.; Dall'Asta, C.; Selleri, S.; Cucinotta, A. The geek and the chemist: Antioxidant capacity measurements by DPPH assay in beverages using open source tools, consumer electronics and 3D printing. Sens. Actuat. B Chem. 2019, 282, 559–566.
|
[20] |
Van der Werf, R.; Marcic, C.; Khalil, A.; Sigrist, S.; Marchioni, E. ABTS radical scavenging capacity in green and roasted coffee extracts. LWT Food Sci. Technol. 2014, 58, 77–85.
|
[21] |
Jayabalan, R.; Subathradevi, P.; Marimuthu, S.; Sathishkumar, M.; Swaminathan, K. Changes in free-radical scavenging ability of kombucha tea during fermentation. Food Chem. 2008, 109, 227–234.
|
[22] |
Górnaś, P.; Dwiecki, K.; Siger, A.; Tomaszewska-Gras, J.; Michalak, M.; Polewski, K. Contribution of phenolic acids isolated from green and roasted boiled-type coffee brews to total coffee antioxidant capacity. Eur. Food Res. Technol. 2016, 242, 641–653.
|
[23] |
Saha, S.; Verma, R.J. Antioxidant activity of polyphenolic extract of Terminalia chebula Retzius fruits. J. Taibah Univ. Sci. 2016, 10, 805–812.
|
[1] | Lei Jiang, Yujiao Tu, Weihua Dai, Lin Yuan. Chemical constituents from the calli of Maytenus hookeri [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(4): 283-290. |
[2] | Jiaqiong Yang, Ying Liu, Daqing Zong, Jingfeng Zhao. Preliminary study on blood coagulation and hemostatic effect and acute toxicity of Oxalis corniculata L. ethanol extract [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(7): 530-535. |
[3] | Jingling Tan, Juan Lu, Guohua Zheng. Chemical constituents from the stem of Embelia laeta [J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(4): 264-269. |
[4] | Chengneng Mi, Wenli Mei, Jingzhe Yuan, Wenxing Long, Haofu Dai. Chemical constituents from agarwood of Aquilaria filaria [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(6): 505-517. |
[5] | Tong Wu, Xiao Du, Jiannong Wang, Liangyu Liu, Yuke Yang. Two new glycoalkaloids from Solanum lyratum Thunb. [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(6): 518-523. |
[6] | Xin Dong, Hong Wang, Feixiang Ma, Jianping Gao, Shizhong Chen, Peifeng Xue. A strategy for structure-activity relationship study on antioxidants in Echinops latifolius Tausch extracts by online HPLC-radical scavenging detection coupled with ESI-IT-TOF-MSn [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(4): 267-279. |
[7] | Caicai Xi, Yunling Xu, Kang Feng, Renzhao Wu, Shihong Luo. Chemical constituents from the seeds of Capparis masaikai [J]. Journal of Chinese Pharmaceutical Sciences, 2021, 30(11): 924-931. |
[8] | Huinan Wang, Jingzhen Zhang, Yuexin Cui, Siyu Wang, Hui Gao, Yao Zhang, Xinjie Wang, Ziye Yang, Mengyu Chen, Peihua Wang, Guimei Zhang, Yingzi Wang, Chao Zhang. Chemical comparison of Semen Euphorbiae and Semen Euphorbiae Pulveratum by UPLC-Q-TOF/MS coupled with multivariate statistical techniques [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(7): 470-479. |
[9] | Jing Chen, Li Cheng, Fuqian Wang, Xuanbin Wang, Yonghui Zhang, Xincai Hao. Chemical constituents from Trichosanthes cucumeroides [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(6): 431-438. |
[10] | Fangfang Xu, Biao Sun, Xiaoqi Zhang, Bo Liu. Flavonoid C-glycosides from the seeds of Hovenia dulcis Thunb. [J]. Journal of Chinese Pharmaceutical Sciences, 2020, 29(11): 813-818. |
[11] | Xiaolu Yang, Xingyang Xue, Yan Lin, Qiyun Huang, Maoyan Mo, Shumei Wang, Jiang Meng. Chemical constituents from the Moutan Cortex charcoal and their potential coagulation activities [J]. Journal of Chinese Pharmaceutical Sciences, 2018, 27(9): 608-616. |
[12] | Chuanjun Huang, Xiaorui Liu, Mi Zhang, Qiong Bie, Fanrong Zeng, Yanyan Wang, Chunmei Chen, Hucheng Zhu, Yonghui Zhang. A new alkaloid from Chaetomium globosum [J]. Journal of Chinese Pharmaceutical Sciences, 2018, 27(9): 617-622. |
[13] | Yifan Zhao, Dong Zhang, Caixia Liang, Lixin Yang, Peng Sun, Yue Ma, Kun Wang, Xiaoqiang Chang, Lan Yang. Chemical constituents from Matricaria chamomilla L. (I) [J]. Journal of Chinese Pharmaceutical Sciences, 2018, 27(5): 324-331. |
[14] | Qian Li, Shuding Sun, Meiying Wang, Caifeng Li, Dan Yuan, Hongzheng Fu. Chemical constituents and analgesic activity of Aconitum kusnezoffii Reichb. [J]. Journal of Chinese Pharmaceutical Sciences, 2018, 27(12): 855-863. |
[15] | Li Cheng, Jing Chen, Yan Tan, Fuqian Wang, Xuanbin Wang, Yongbo Xue, Xincai Hao, Yonghui Zhang. Chemical constituents from Teucrium viscidum [J]. Journal of Chinese Pharmaceutical Sciences, 2018, 27(10): 719-723. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||