Journal of Chinese Pharmaceutical Sciences ›› 2023, Vol. 32 ›› Issue (11): 911-922.DOI: 10.5246/jcps.2023.11.073
• Original articles • Previous Articles Next Articles
Yuqian Zhang1, Haiying Niu2, Yiran Jin1,*()
Received:
2023-04-20
Revised:
2023-05-16
Accepted:
2023-06-15
Online:
2023-12-02
Published:
2023-12-02
Contact:
Yiran Jin
Supporting:
Yuqian Zhang, Haiying Niu, Yiran Jin. Network pharmacology-based strategy to investigate anticancer mechanisms of Catharanthus roseus (L.) G. Don[J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 911-922.
[1] |
Maryam, M.; Rusea, G.; Christina, Y. S. Y.; Mohd, N. Vinca Alkaloids. Int. J. Prcv. Med. 2013, 4, 1231–1235.
|
[2] |
Kumar, S.; Singh, B.; Singh, R. Catharanthus roseus (L.) G. don: a review of its ethnobotany, phytochemistry, ethnopharmacology and toxicities. J. Ethnopharmacol. 2022, 284, 114647.
|
[3] |
Rajashekara, S.; Reena, D.; Mainavi, M.V.; Sandhya, L.S.; Baro, U. Biological isolation and characterization of Catharanthus roseus (L.) G. Don methanolic leaves extracts and their assessment for antimicrobial, cytotoxic, and apoptotic activities. BMC Complement. Med. Ther. 2022, 22, 328.
|
[4] |
Wu, X.; Xie, H.; Long, X.; Zhang, J.; Huang, T.; Hao, X.; Zhang, Y. Chemical Constituents of Catharanthus roseus. Chin. Pharm. J. 2017, 52, 631–636.
|
[5] |
Hou, W.B. Advances in studies on chemical constituents in Catharanthus roseus and their pharmacological activities. Drugs Clin. 2011, 26, 274–277.
|
[6] |
Zeng, Y.; Mei, W.; Dong, W.; Li, X.; Dai, H. Cytotoxic activity of four kinds of extracts of Catharanthus roseus (L.) G. Don. against human hepatoma cells. Chin. J. Tropical. Agric. 2012, 32, 41–43.
|
[7] |
Rischer, H.; Orešič, M.; Seppänen-Laakso, T.; Katajamaa, M.; Lammertyn, F.; Ardiles-Diaz, W.; Van Montagu, M.C.E.; Inzé, D.; Oksman-Caldentey, K.M.; Goossens, A. Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. Proc. Natl. Acad. Sci. USA. 2006, 103, 5614–5619.
|
[8] |
Ferreres, F.; Pereira, D.M.; Valentão, P.; Andrade, P.B.; Seabra, R.M.; Sottomayor, M. New phenolic compounds and antioxidant potential of Catharanthus roseus. J. Agric. Food Chem. 2008, 56, 9967–9974.
|
[9] |
Levêque, D.; Jehl, F. Molecular pharmacokinetics of catharanthus (vinca) alkaloids. J. Clin. Pharmacol. 2007, 47, 579–588.
|
[10] |
Mustafa, N.R.; Verpoorte, R. Phenolic compounds in Catharanthus roseus. Phytochem. Rev. 2007, 6, 243–258.
|
[11] |
Qu, Y.; Easson, M.E.A.M.; Simionescu, R.; Hajicek, J.; Thamm, A.M.K.; Salim, V.; De Luca, V. Solution of the multistep pathway for assembly of corynanthean, strychnos, iboga, and aspidosperma monoterpenoid indole alkaloids from 19 E-geissoschizine. Proc. Natl. Acad. Sci. USA. 2018, 115, 3180–3185.
|
[12] |
Hopkins, A.L. Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4, 682–690.
|
[13] |
Guan, Y.; Zheng, X.; Yan, M.; Wu, H.; Zhang, G.; Lu, L. Analysis of effective components of Scutellaria baicalensis- Sophora japonica drug pair by UPLC-ESI-TOF/MS and network pharmacology analysis of its effect on chronic kidney disease. Chin. Tradit. Herb. Drugs. 2022, 53, 6388–6400.
|
[14] |
Zhang, Y.Q.; Li, Y.T.; Mao, X.A.; Yan, C.; Guo, X.D.; Guo, Q.Y.; Liu, Z.L.; Song, Z.Q.; Lin, N. Thyroid hormone synthesis: a potential target of a Chinese herbal formula Haizao Yuhu Decoction acting on iodine-deficient goiter. Oncotarget. 2016, 7, 51699–51712.
|
[15] |
Fang, J.S.; Wang, L.; Wu, T.; Yang, C.; Gao, L.; Cai, H.B.; Liu, J.H.; Fang, S.H.; Chen, Y.B.; Tan, W.; Wang, Q. Network pharmacology-based study on the mechanism of action for herbal medicines in Alzheimer treatment. J. Ethnopharmacol. 2017, 196, 281–292.
|
[16] |
Xiao, Y.; Lin, Z.; Guo, J.; Chen, P.; Zhang, Y.; Zhang, P.; Su, Y. Study on the pharmacodynamic substances of Zhuanggu Jianxi Recipe in the treatment of knee osteoarthritis based on serum pharmacochemistry, network pharmacology and cell experiment. Tradit. Chin. Drug Res. Clin. Pharm. 2023, 34, 357–366.
|
[17] |
Cao, M.; Xu, L.; Xin, Z.; Fang, M.; Xing, X.; Chen, X.; Wang, C.; Wei, X.; Ren, W. Network pharmacology study of Fritillariae Thunbergii Bulbus-Trichosanthis Fructus compatibility for treating chronic obstructive pulmonary disease based on the BATMAN-TCM online analysis platform. Shandong Sci. 2021, 34, 10–20.
|
[18] |
Kufe, D.W.; Pollock, R.E.; Weichselbaum, R.R.; Bast, R.C.; Gansler, T.S.; Holland JF. Holland-Frei cancer medicine. 6thed. Hamilton (ON): BC Decker Inc. 2003.
|
[19] |
Chen, Q.; Lu, X.Y.; Guo, X.R.; Guo, Q.X.; Li, D.W. Metabolomics characterization of two Apocynaceae plants, Catharanthus roseus and vinca minor, using GC-MS and LC-MS methods in combination. Molecules. 2017, 22, 997.
|
[20] |
Zeng, Y.; Mei, W.; Zhuang, L.; Hong, K.; Dai, H. Study on cytotoxic activity of Catharanthus roseus (L.) G. Don. Human Cells. 2007, 1, 5–7.
|
[21] |
Chung, I.M.; Kim, J.J.; Chun, S.C. A new aliphatic glycoside constituent from the hairy root cultures of Catharanthus roseus. Asian J. Chem. 2008, 20, 642–648.
|
[22] |
Neuss, N.; Neuss, M.N. Chapter 6 therapeutic use of bisindole alkaloids from catharanthus. The Alkaloids: Chem. Pharm. 1990, 229–240.
|
[23] |
Kazemi, M.H.; Raoofi Mohseni, S.; Hojjat-Farsangi, M.; Anvari, E.; Ghalamfarsa, G.; Mohammadi, H.; Jadidi-Niaragh, F. Adenosine and adenosine receptors in the immunopathogenesis and treatment of cancer. J. Cell Physiol. 2018, 233, 2032–2057.
|
[24] |
Baggetto, L.G.; Testa-Parussini, R. Role of acetoin on the regulation of intermediate metabolism of Ehrlich ascites tumor mitochondria: its contribution to membrane cholesterol enrichment modifying passive proton permeability. Arch. Biochem. Biophys. 1990, 283, 241–248.
|
[25] |
Nàger, M.; Sallán, M.C.; Visa, A.; Pushparaj, C.; Santacana, M.; Macià, A.N.; Yeramian, A.; Cantí, C.; Herreros, J. Inhibition of WNT-CTNNB1 signaling upregulates SQSTM1 and sensitizes glioblastoma cells to autophagy blockers. Autophagy. 2018, 14, 619–636.
|
[26] |
Wang, S.J.; Yang, Z.; Gao, Y.; Li, Q.Z.; Su, Y.; Wang, Y.F.; Zhang, Y.; Man, H.; Liu, H.X. Pyruvate kinase, muscle isoform 2 promotes proliferation and insulin secretion of pancreatic β-cells via activating Wnt/CTNNB1 signaling. Biology. 2015.
|
[27] |
Canal, F.; Anthony, E.; Lescure, A.; Del Nery, E.; Camonis, J.; Perez, F.; Ragazzon, B.; Perret, C. A kinome siRNA screen identifies HGS as a potential target for liver cancers with oncogenic mutations in CTNNB1. BMC Cancer. 2015, 15, 1020.
|
[28] |
Lopez, B. P.; Kim, H.; Dewing, A. c-Jun regulates phosphoinositi de-dependent kinase 1 transcription: implication for Akt and protein kinase C activities and melanoma tumorigenesis. J. Biol. Chem. 2010, 285, 903–913.
|
[29] |
Li, X.A.; Hu, Z.H.; Shi, H.R.; Wang, C.; Lei, J.A.; Cheng, Y. Inhibition of VEGFA increases the sensitivity of ovarian cancer cells to chemotherapy by suppressing VEGFA-mediated autophagy. OncoTargets Ther. 2020, 13, 8161–8171.
|
[30] |
Yang, W.; He, X.; He, C.J.; Peng, L.N.; Xing, S.S.; Li, D.D.; Wang, L.; Jin, T.B.; Yuan, D.Y. Impact of ESR1 polymorphisms on risk of breast cancer in the Chinese Han population. Clin. Breast Cancer. 2021, 21, e235–e242.
|
[31] |
Iyer, N.V.; Kotch, L.E.; Agani, F.; Leung, S.W.; Laughner, E.; Wenger, R.H.; Gassmann, M.; Gearhart, J.D.; Lawler, A.M.; Yu, A.Y.; Semenza, G.L. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. 1998, 12, 149–162.
|
[32] |
Cimmino, F.; Avitabile, M.; Lasorsa, V.A.; Montella, A.; Pezone, L.; Cantalupo, S.; Visconte, F.; Corrias, M.V.; Iolascon, A.; Capasso, M. HIF-1 transcription activity: HIF1A driven response in normoxia and in hypoxia. BMC Med. Genet. 2019, 20, 37.
|
[33] |
Semenza, G.L. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer. 2003, 3, 721–732.
|
[34] |
Ebright, R.Y.; Zachariah, M.A.; Micalizzi, D.S.; Wittner, B.S.; Niederhoffer, K.L.; Nieman, L.T.; Chirn, B.; Wiley, D.F.; Wesley, B.; Shaw, B.; Nieblas-Bedolla, E.; Atlas, L.; Szabolcs, A.; Iafrate, A.J.; Toner, M.; Ting, D.T.; Brastianos, P.K.; Haber, D.A.; Maheswaran, S. HIF1A signaling selectively supports proliferation of breast cancer in the brain. Nat. Commun. 2020, 11, 6311.
|
[35] |
Palazon, A.; Goldrath, A.W.; Nizet, V.; Johnson, R.S. HIF transcription factors, inflammation, and immunity. Immunity. 2014, 41, 518–528.
|
[36] |
Ouyang, Y.; Li, J.; Tu, Y.; Sun, S. HIF1A is a prognostic biomarker of breast cancer and correlates with immunocyte infiltration. Chin. J. Cancer Biother. 2022, 29, 317–326.
|
[37] |
Engelman, J.A.; Luo, J.; Cantley, L.C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 2006, 7, 606–619.
|
[38] |
Zhang, T.; Ma, Y.P.; Fang, J.S.; Liu, C.; Chen, L.R. A deregulated PI3K-AKT signaling pathway in patients with colorectal cancer. J. Gastrointest. Cancer. 2019, 50, 35–41.
|
[39] |
Lien, E.C.; Dibble, C.C.; Toker, A. PI3K signaling in cancer: beyond AKT. Curr. Opin. Cell Biol. 2017, 45, 62–71.
|
[40] |
Shankar, E.; Weis, M.; Avva, J.; Shukla, S.; Shukla, M.; Sreenath, S.; Gupta, S. Complex systems biology approach in connecting PI3K-akt and NF-κB pathways in prostate cancer. Cells. 2019, 8, 201.
|
[41] |
Ruan, K.; Song, G.; Ouyang, G.L. Role of hypoxia in the hallmarks of human cancer. J. Cell Biochem. 2009, 107, 1053–1062.
|
[42] |
Song, J.K.; Chen, W.M.; Zhu, G.H.; Wang, W.; Sun, F.; Zhu, J.G. Immunogenomic profiling and classification of prostate cancer based on HIF-1 signaling pathway. Front. Oncol. 2020, 10, 1374.
|
[43] |
Guo, Y.X.; Mao, W.Y.; Jin, L.; Xia, L.Y.; Huang, J.; Liu, X.; Ni, P.; Shou, Q.Y.; Fu, H.Y. Flavonoid group of Smilax glabra roxb. regulates the anti-tumor immune response through the STAT3/HIF-1 signaling pathway. Front. Pharmacol. 2022, 13, 918975.
|
[1] | Mengyao Wu, Lu Liu, Peng Zhang, Lele Zhang, Yun Gong, Xiuwei Yang. Exploring the mechanism of Buxue Yimu Pills on postpartum abdominal pain through network pharmacology and experimental validation [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 691-703. |
[2] | Ping Shang, Lin Liu, Yi Fang. Investigating the mechanism of action of Gui Zhi Fu Ling Wan in the treatment of endometriosis based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 704-719. |
[3] | Gedi Zhang, Gengxin Liu, Ziyou Yan. Therapeutic efficacy evaluation and mechanism of action based on meta-analysis and network pharmacology of Li Chong Decoction (Bolus) for cancer treatment [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 720-735. |
[4] | Haoxin Du, Qi Bao, Huangqianyu Li, Yichen Zhang, Haishaerjiang Wushouer, Luwen Shi, Xiaodong Guan. Health status of middle-aged and elderly cancer survivors in China [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 744-754. |
[5] | Dongyan Wu, Xiaodan Wang, Jinmiao Chai, Qinqing Li, Yue Li, Mei Bi, Wanwei Gui, Huimin Cao. Study on the mechanism of Danggui Buxue decoction in the treatment of diabetic retinopathy based on network pharmacology and experiment [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(7): 527-538. |
[6] | Wentao Zhu, Wanglong Hong, Miaomiao Zheng, Guoqiang Ma, Aizong Shen. Combination of pembrolizumab and chemotherapy as first-line treatment in advanced triple-negative breast cancer: a cost-effectiveness analysis [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(7): 587-597. |
[7] | Huan Yan, Jian Wang, Hao Fu, Min Yang, Miao Qu, Zhie Fang. Discussion on the potential target and mechanism of Dachaihu Decoction in treating hyperlipidemia based on network pharmacology [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(6): 446-459. |
[8] | Mengya Wang, Kuanyou Zhang, Xin Chen, Hao Fu, Shouchun Peng. Study on the mechanism of Rhinoceros Horn and Rehmannia Decoction in the treatment of systemic lupus erythematosus based on the method of network pharmacology [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(5): 351-359. |
[9] | Guangzhi Shen, Xingang Cui, Zhimin Na, Yulong Zou, Guihua Zou. A network pharmacology approach to explore the pharmacological mechanism of Epimedium brevicornum in sexual dysfunction [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(5): 379-391. |
[10] | Yancong Zhao, Huiyuan Gong, Jinghua Li. Overexpression of hBD3 inhibits cell proliferation, cell cycle, and migration in colon cancer cells [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(4): 250-259. |
[11] | Min Ao, Minglan Bao, Yaxing Hou, Ying Yue, Huifang Li, Guohua Wu, Su Ri Ga La Tu. Study on the mechanism of Mongolian medicine Herba Lomatognii against acute liver injury based on network pharmacology [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(4): 268-282. |
[12] | Ciyan Peng, Jing Chen, Sini Li, Jianhe Li, Liubao Peng. Evidence-based pharmacoeconomic evaluation of palbociclib in combination with letrozole versus docetaxel in combination with epirubicin in the first-line treatment of advanced breast cancer with epirubicin [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(3): 214-222. |
[13] | Yajing Li, Yawen Bai, Yu Du, Changhong Yan, Chunjie Ma, Lining Sun, Fengyue Bu, Haoyang Yan. Yu Ping Feng Powder for chronic glomerulonephritis treatment: A meta-analysis and network pharmacology study [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(12): 1006-1026. |
[14] | Zhiyong Sun, Shuli Gao, Yang Zhang, Gangqiang Xue, Zilin Yuan, Shaonan Wang. Study on the potential mechanism of Pu Gong Ying in treating breast hyperplasia based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 893-910. |
[15] | Daiying Zhou, Jing Chen, Zhigang Lv. Network pharmacology prediction and molecular docking-based study on the mechanism of Erigeron breviscapus in the treatment of age-related macular degeneratio [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 923-934. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||