Journal of Chinese Pharmaceutical Sciences ›› 2023, Vol. 32 ›› Issue (11): 893-910.DOI: 10.5246/jcps.2023.11.072
• Original articles • Previous Articles Next Articles
Zhiyong Sun1,*(), Shuli Gao1, Yang Zhang1, Gangqiang Xue1, Zilin Yuan1, Shaonan Wang2
Received:
2023-05-21
Revised:
2023-06-15
Accepted:
2023-07-27
Online:
2023-12-02
Published:
2023-12-02
Contact:
Zhiyong Sun
Supporting:
Zhiyong Sun, Shuli Gao, Yang Zhang, Gangqiang Xue, Zilin Yuan, Shaonan Wang. Study on the potential mechanism of Pu Gong Ying in treating breast hyperplasia based on network pharmacology and molecular docking[J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 893-910.
[1] |
Gao, H.L.; Yang, C.; Fan, J.Q.; Lan, L.; Pang, D. Hereditary and breastfeeding factors are positively associated with the aetiology of mammary gland hyperplasia: a case–control study. Int. Health. 2020, 13, 240–247.
|
[2] |
Chen, C.C.; Jiang, C.G.; Chen, Q.Q.; Gao, D. Efficacy of psychological interventions for patients with breast hyperplasia. Cell Biochem. Biophys. 2015, 71, 1663–1669.
|
[3] |
Wang, L.S.; Zhao, D.Q.; Di, L.; Cheng, D.Y.; Zhou, X.F.; Yang, X.W.; Liu, Y.H. The anti-hyperplasia of mammary gland effect of Thladiantha dubia root ethanol extract in rats reduced by estrogen and progestogen. J. Ethnopharmacol. 2011, 134, 136–140.
|
[4] |
Sun, Z.Y.; Xue, G.Q.; Zhang, Y.; Yuan, Z.L.; Gao, S.L. HPLC fingerprint and determination of isochlorogenic acid B and hesperidin in Kun Runing granules. Guangzhou. Chem. Ind. 2020, 5, 101–104.
|
[5] |
Ge, B.J.; Zhao, P.; Li, H.T.; Sang, R.; Wang, M.; Zhou, H.Y.; Zhang, X.M. Taraxacum mongolicum protects against Staphylococcus aureus-infected mastitis by exerting anti-inflammatory role via TLR2-NF-κB/MAPKs pathways in mice. J. Ethnopharmacol. 2021, 268, 113595.
|
[6] |
Chen, H.B.; Zhou, H.G.; Li, W.T.; Cheng, H.B.; Wu, M.H. Network pharmacology: A new perspective of mechanism research of traditional Chinese medicine formula. Chin. J. Trad. Chin. Med. Pharm. 2019, 7, 2873–2876.
|
[7] |
Saikia, S.; Bordoloi, M. Molecular docking: challenges, advances and its use in drug discovery perspective. Curr. Drug Targets. 2019, 20, 501–521.
|
[8] |
Ding, N.; Zhang, T.; Luo, J.; Liu, H.C.; Deng, Y.; He, Y.H. Study on the mechanism of Baishao Qiwu Decoction in the treatment of colorectal cancer based on network pharmacology and molecular docking. J. Chin. Pharm. Sci. 2023, 32, 17.
|
[9] |
Xu, H.Y.; Zhang, Y.Q.; Liu, Z.M.; Chen, T.; Lv, C.Y.; Tang, S.H.; Zhang, X.B.; Zhang, W.; Li, Z.Y.; Zhou, R.R.; Yang, H.J.; Wang, X.J.; Huang, L.Q. ETCM: an encyclopaedia of traditional Chinese medicine. Nucleic Acids Res. 2019, 47, D976–D982.
|
[10] |
Kim, S.; Chen, J.; Cheng, T.J.; Gindulyte, A.; He, J.; He, S.Q.; Li, Q.L.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021, 49, D1388–D1395.
|
[11] |
Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717.
|
[12] |
Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019, 47, W357–W364.
|
[13] |
Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; Kaplan, S.; Dahary, D.; Warshawsky, D.; Guan-Golan, Y.; Kohn, A.; Rappaport, N.; Safran, M.; Lancet, D. The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinform. 2016, 54, 1.30.1–1.30.33.
|
[14] |
Piñero, J.; Saüch, J.; Sanz, F.; Furlong, L.I. The DisGeNET cytoscape app: exploring and visualizing disease genomics data. Comput. Struct. Biotechnol. J. 2021, 19, 2960–2967.
|
[15] |
Amberger, J.S.; Hamosh, A. Searching online Mendelian inheritance in man (OMIM): a knowledgebase of human genes and genetic phenotypes. Curr. Protoc. Bioinform. 2017, 58, 1.2.1–1.2.12.
|
[16] |
Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.F.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.A.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082.
|
[17] |
Soudy, M.; Anwar, A.M.; Ali Ahmed, E.; Osama, A.; Ezzeldin, S.; Mahgoub, S.; Magdeldin, S. UniprotR: Retrieving and visualizing protein sequence and functional information from Universal Protein Resource (UniProt knowledgebase). J. Proteom. 2020, 213, 103613.
|
[18] |
Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; von Mering, C. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613.
|
[19] |
Otasek, D.; Morris, J.H.; Bouças, J.; Pico, A.R.; Demchak, B. Cytoscape Automation: empowering workflow-based network analysis. Genome Biol. 2019, 20, 185.
|
[20] |
Chin, C.H.; Chen, S.H.; Wu, H.H.; Ho, C.W.; Ko, M.T.; Lin, C.Y. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 2014, 8, S11.
|
[21] |
Saito, R.; Smoot, M.E.; Ono, K.; Ruscheinski, J.; Wang, P.L.; Lotia, S.; Pico, A.R.; Bader, G.D.; Ideker, T. A travel guide to Cytoscape plugins. Nat. Methods. 2012, 9, 1069–1076.
|
[22] |
Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57.
|
[23] |
Goodsell, D.S.; Zardecki, C.; Berman, H.M.; Burley, S.K. Insights from 20 years of the molecule of the month. Biochem. Mol. Biol. Educ. 2020, 48, 350–355.
|
[24] |
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461.
|
[25] |
Shi, S.Y.; Zhao, Y.; Zhou, H.H.; Zhang, Y.P.; Jiang, X.Y.; Huang, K.L. Identification of antioxidants from Taraxacum mongolicum by high-performance liquid chromatography-diode array detection-radical-scavenging detection-electrospray ionization mass spectrometry and nuclear magnetic resonance experiments. J. Chromatogr. A. 2008, 1209, 145–152.
|
[26] |
Shi, S.Y.; Zhou, Q.; Peng, H.; Zhou, C.X.; Hu, M.H.; Tao, Q.F.; Hao, X.J.; Stöckigt, J.; Zhao, Y. Four new constituents from Taraxacum mongolicum. Chin. Chem. Lett. 2007, 18, 1367–1370.
|
[27] |
Wolbis, M.; Krolikowska, M.; Bednarek, P. Polyphenolic compounds in Taraxacum officinale. Acta. Pol. Pharm. 1993, 2–3, 153–155.
|
[28] |
Komissarenko, N.F.; Derkach, A. Taraxacum officinale couma- rins. Khim. Prir. Soedin. 1981, 4, 519–522.
|
[29] |
Wolbis, M.; Krolikowska, M. Polyphenolic compounds of dandelion. Acta Pol. Pharm. 1985, 42, 215–217.
|
[30] |
Ling, Y.; Zhang, Y.L.; Cai, S.Q.; Zheng, J.H. Flavonoids and Steroids from Taraxacumsinicum Kitag. Chin. J. Med. Chem. 1988, 1, 46–48.
|
[31] |
Wang, W.B. Determination of five Flavonoids in different Taraxacum mongolicum Hand.-Mazz. extracts using HPLC. Food. Industry. 2018, 8, 302–305.
|
[32] |
Shi, S.Y.; Zhou, C.X.; Xu, Y.; Tao, Q.F.; Bai, H.; Lu, F.S.; Lin, W.Y.; Chen, H.Y.; Zheng, W.; Wang, L.W.; Wu, Y.H.; Zeng, S.; Huang, K.X.; Zhao, Y.; Li, X.K.; Qu, J. Studies on chemical constituents from herbs of Taraxacum mongolicum. China J. Chin. Mater. Med. 2008, 10, 1147–1157.
|
[33] |
Kisiel, W.; Michalska, K. Sesquiterpenoids and phenolics from Taraxacum hondoense. Fitoterapia. 2005, 76, 520–524.
|
[34] |
Hansel, R.; Kartarahardja, M.; Huang, J.T. Naturally occuring terpene derivatives, part263 sequiterpene lactone-β-D-glucopyranoside together with a new eudes manolide from Taraxacum officinale. Phytochem. 1980, 5, 857–886.
|
[35] |
Hsin, K.Y.; Ghosh, S.; Kitano, H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology. PLoS One. 2013, 8, e83922.
|
[36] |
Hu, G.; Wang, J.J.; Hong, D.; Zhang, T.; Duan, H.Q.; Mu, X.; Yang, Z.J. Effects of aqueous extracts of Taraxacum Officinale on expression of tumor necrosis factor-alpha and intracellular adhesion molecule 1 in LPS-stimulated RMMVECs. BMC Complement. Altern. Med. 2017, 17, 38.
|
[37] |
Sun, Y.W.; Wu, Y.J.; Wang, Z.L.; Chen, J.C.; Yang, Y.; Dong, G.Z. Dandelion extract alleviated lipopolysaccharide-induced oxidative stress through the Nrf2 pathway in bovine mammary epithelial cells. Toxins. 2020, 12, 496.
|
[38] |
San, Z.H. Anti-inflammatory Activity and Regulation Mechanisms of Taraxasterol on Mammitis Induced by LPS. Jilin. Univ. 2015.
|
[39] |
Azab, A.; Nassar, A.; Azab, A.N. Anti-inflammatory activity of natural products. Molecules. 2016, 21, 1321.
|
[40] |
Neha, D.; Shikha, S. Cancer chemotherapy with novel bioactive natural products. J. Chin. Pharm. Sci. 2022, 31, 589.
|
[41] |
Saito, N. Chemical research on antitumor isoquinoline marine natural products and related compounds. Chem. Pharm. Bull. 2021, 69, 155–177.
|
[42] |
Ory, L.; Nazih, E.H.; Daoud, S.; Mocquard, J.; Bourjot, M.; Margueritte, L.; Delsuc, M.A.; Bard, J.M.; Pouchus, Y.F.; Bertrand, S.; Roullier, C. Targeting bioactive compounds in natural extracts - Development of a comprehensive workflow combining chemical and biological data. Anal. Chim. Acta. 2019, 1070, 29–42.
|
[43] |
Conti, P.; Caraffa, A.; Gallenga, C.E.; Ross, R.; Kritas, S.K.; Frydas, I.; Younes, A.; Di Emidio, P.; Ronconi, G.; Pandolfi, F. Powerful anti-inflammatory action of luteolin: potential increase with IL-38. BioFactors. 2021, 47, 165–169.
|
[44] |
Li, B.S.; Zhu, R.Z.; Lim, S.H.; Seo, J.H.; Choi, B.M. Apigenin alleviates oxidative stress-induced cellular senescence via modulation of the SIRT1-NAD+-CD38 axis. Am. J. Chin. Med. 2021, 49, 1235–1250.
|
[45] |
Ren, X.J.; Han, L.Y.; Li, Y.X.; Zhao, H.Y.; Zhang, Z.Y.; Zhuang, Y.R.; Zhong, M.; Wang, Q.; Ma, W.H.; Wang, Y. Isorhamnetin attenuates TNF-α-induced inflammation, proliferation, and migration in human bronchial epithelial cells via MAPK and NF-κB pathways. Anat. Rec. 2021, 304, 901–913.
|
[46] |
Guo, Y.F.; Xu, N.N.; Sun, W.J.; Zhao, Y.F.; Li, C.Y.; Guo, M.Y. Luteolin reduces inflammation in Staphylococcus aureus-induced mastitis by inhibiting NF-kB activation and MMPs expression. Oncotarget. 2017, 17, 28481–28493.
|
[47] |
Tian, L.; Wang, S.; Jiang, S.S.; Liu, Z.Y.; Wan, X.Q.; Yang, C.C.; Zhang, L.; Zheng, Z.; Wang, B.; Li, L. Luteolin as an adjuvant effectively enhances CTL anti-tumor response in B16F10 mouse model. Int. Immunopharmacol. 2021, 94, 107441.
|
[48] |
Wang, Y.; Wang, Q.M.; Feng, W.; Yuan, Q.; Qi, X.W.; Chen, S.; Yao, P.; Dai, Q.; Xia, P.Y.; Zhang, D.L.; Sun, F.J. Folic acid-modified ROS-responsive nanoparticles encapsulating luteolin for targeted breast cancer treatment. Drug Deliv. 2021, 28, 1695–1708.
|
[49] |
Malik, S.; Suchal, K.; Khan, S.I.; Bhatia, J.; Kishore, K.; Dinda, A.K.; Arya, D.S. Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-κB-TNF-α and TGF-β1-MAPK-fibronectin pathways. Am. J. Physiol. Renal Physiol. 2017, 313, F414–F422.
|
[50] |
Patil, R.H.; Babu, R.L.; Kumar, M.N.; Kiran Kumar, K.M.; Hegde, S.M.; Nagesh, R.; Ramesh, G.T.; Sharma, S.C. Anti-inflammatory effect of apigenin on LPS-induced pro-inflammatory mediators and AP-1 factors in human lung epithelial cells. Inflammation. 2016, 39, 138–147.
|
[51] |
Baier, A.; Nazaruk, J.; Galicka, A.; Szyszka, R. Inhibitory influence of natural flavonoids on human protein kinase CK2 isoforms: effect of the regulatory subunit. Mol. Cell. Biochem. 2018, 444, 35–42.
|
[52] |
Landesman-Bollag, E.; Song, D.H.; Romieu-Mourez, R.; Sussman, D.J.; Cardiff, R.D.; Sonenshein, G.E.; Seldin, D.C. Protein kinase CK2: signaling and tumorigenesis in the mammary gland. Mol. Cell Biochem. 2001, 227, 153–165.
|
[53] |
Kim, S.Y.; Jin, C.Y.; Kim, C.H.; Yoo, Y.H.; Choi, S.H.; Kim, G.Y.; Yoon, H.M.; Park, H.T.; Choi, Y.H. Isorhamnetin alleviates lipopolysaccharide-induced inflammatory responses in BV2 microglia by inactivating NF-κB, blocking the TLR4 pathway and reducing ROS generation. Int. J. Mol. Med. 2019, 43, 682–692.
|
[54] |
Seo, K.; Yang, J.H.; Kim, S.C.; Ku, S.K.; Ki, S.H.; Shin, S.M. The antioxidant effects of isorhamnetin contribute to inhibit COX-2 expression in response to inflammation: a potential role of HO-1. Inflammation. 2014, 37, 712–722.
|
[55] |
Zhang, Z.W.; Zhang, H.; Li, D.B.; Zhou, X.P.; Qin, Q.; Zhang, Q.Y. Caspase-3-mediated GSDME induced Pyroptosis in breast cancer cells through the ROS/JNK signalling pathway. J. Cell Mol. Med. 2021, 25, 8159–8168.
|
[56] |
Gompel, A.; Chaouat, M.; Hugol, D.; Forgez, P. Steroidal hormones and proliferation, differentiation and apoptosis in breast cells. Maturitas. 2004, 49, 16–24.
|
[57] |
Brandt, R.; Eisenbrandt, R.; Leenders, F.; Zschiesche, W.; Binas, B.; Juergensen, C.; Theuring, F. Mammary gland specific hEGF receptor transgene expression induces neoplasia and inhibits differentiation. Oncogene. 2000, 19, 2129–2137.
|
[58] |
Hartmann, L.C.; Degnim, A.C.; Santen, R.J.; Dupont, W.D.; Ghosh, K. Atypical hyperplasia of the breast: risk assessment and management options. N. Engl. J. Med. 2015, 372, 78–89.
|
[59] |
Moasser, M.M. The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene. 2007, 26, 6469–6487.
|
[60] |
Ma, W.; Shi, B.; Zhao, F.K.; Wu, Y.F.; Jin, F. Systematic analysis of breast atypical hyperplasia-associated hub genes and pathways based on text mining. Eur. J. Cancer Prev. 2019, 28, 507–514.
|
[61] |
Tan, H.; Zhong, Y.; Pan, Z. Autocrine regulation of cell proliferation by estrogen receptor-alpha in estrogen receptor-alpha-positive breast cancer cell lines. BMC. Cancer. 2009, 9, 31.
|
[62] |
Mao, X.Y.; Qiao, Z.; Fan, C.F.; Guo, A.Y.; Yu, X.M.; Jin, F. Expression pattern and methylation of estrogen receptor α in breast intraductal proliferative lesions. Oncol. Rep. 2016, 36, 1868–1874.
|
[63] |
Li, H.; Zheng, H.L.; Li, L.H.; Shen, X.G.; Zang, W.J.; Sun, Y.S. The effects of matrix metalloproteinase-9 on dairy goat mastitis and cell survival of goat mammary epithelial cells. PLoS One. 2016, 11, e0160989.
|
[64] |
Naserkheil, M.; Ghafouri, F.; Zakizadeh, S.; Pirany, N.; Manzari, Z.; Ghorbani, S.; Banabazi, M.H.; Bakhtiarizadeh, M.R.; Huq, M.A.; Park, M.N.; Barkema, H.W.; Lee, D.; Min, K.S. Multi-omics integration and network analysis reveal potential hub genes and genetic mechanisms regulating bovine mastitis. Curr. Issues Mol. Biol. 2022, 44, 309–328.
|
[65] |
Glover, J.A.; Hughes, C.M.; Cantwell, M.M.; Murray, L.J. A systematic review to establish the frequency of cyclooxygenase-2 expression in normal breast epithelium, ductal carcinoma in situ, microinvasive carcinoma of the breast and invasive breast cancer. Br. J. Cancer. 2011, 105, 13–17.
|
[66] |
Qin, Q.; Ji, H.F.; Li, D.B.; Zhang, H.; Zhang, Z.W.; Zhang, Q.Y. Tumor-associated macrophages increase COX-2 expression promoting endocrine resistance in breast cancer via the PI3K/Akt/mTOR pathway. Neoplasma. 2021, 68, 938–946.
|
[67] |
Li, Y.; Zhang, Z.L. Potential microRNA-mediated oncogenic intercellular communication revealed by pan-cancer analysis. Sci. Rep. 2014, 4, 7097.
|
[68] |
Pons-Tostivint, E.; Thibault, B.; Guillermet-Guibert, J. Targeting PI3K signaling in combination cancer therapy. Trends Cancer. 2017, 3, 454–469.
|
[69] |
Jiang, K.F.; Zhao, G.; Deng, G.Z.; Wu, H.C.; Yin, N.N.; Chen, X.Y.; Qiu, C.W.; Peng, X.L. Polydatin ameliorates Staphylococcus aureus-induced mastitis in mice via inhibiting TLR2-mediated activation of the p38 MAPK/NF-κB pathway. Acta Pharmacol. Sin. 2017, 38, 211–222.
|
[70] |
Li, S. Network pharmacology evaluation method guidance - draft. World J. Tradit. Chin. Med. 2021, 7, 148.
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||