Journal of Chinese Pharmaceutical Sciences ›› 2022, Vol. 31 ›› Issue (7): 517-529.DOI: 10.5246/jcps.2022.07.045
• Original articles • Previous Articles Next Articles
Ipargul Hafiz, Zhaozhi Wang, Hongji He, Zhezhe Li, Mei Wang*()
Received:
2022-03-12
Revised:
2022-04-05
Accepted:
2022-05-11
Online:
2022-07-31
Published:
2022-07-31
Contact:
Mei Wang
Supporting:
Ipargul Hafiz, Zhaozhi Wang, Hongji He, Zhezhe Li, Mei Wang. Exploring the mechanism of Peganum harmala L. seeds on hepatocellular carcinoma based on network pharmacology and molecular docking[J]. Journal of Chinese Pharmaceutical Sciences, 2022, 31(7): 517-529.
[1] |
Llovet, J.M.; de Baere, T.; Kulik, L.; Haber, P.K.; Greten, T.F.; Meyer, T.; Lencioni, R. Locoregional therapies in the era of molecular and immune treatments for hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 293–313.
|
[2] |
Yang, J.D.; Heimbach, J.K. New advances in the diagnosis and management of hepatocellular carcinoma. BMJ Clin. Res. Ed. 2020, 371, m3544.
|
[3] |
Rebouissou, S.; Nault, J.C. Advances in molecular classification and precision oncology in hepatocellular carcinoma. J. Hepatol. 2020, 72, 215–229.
|
[4] |
Nagakubo, T.; Kumano, T.; Ohta, T.; Hashimoto, Y.; Kobayashi, M. Copper amine oxidases catalyze the oxidative deamination and hydrolysis of cyclic imines. Nat. Commun. 2019, 10, 413.
|
[5] |
Geng, X.R.; Ren, Y.C.; Wang, F.F.; Tian, D.M.; Yao, X.S.; Zhang, Y.W.; Tang, J.S. Harmines inhibit cancer cell growth through coordinated activation of apoptosis and inhibition of autophagy. Biochem. Biophys. Res. Commun. 2018, 498, 99–104.
|
[6] |
Hopkins, A.L. Network pharmacology. Nat. Biotechnol. 2007, 25, 1110–1111.
|
[7] |
Liu, Z.Y.; Guo, F.F.; Wang, Y.; Li, C.; Zhang, X.L.; Li, H.L.; Diao, L.H.; Gu, J.Y.; Wang, W.; Li, D.; He, F.C. BATMAN-TCM: a bioinformatics analysis tool for molecular mechANism of traditional Chinese medicine. Sci. Rep. 2016, 6, 21146.
|
[8] |
Xue, R.C.; Fang, Z.; Zhang, M.X.; Yi, Z.H.; Wen, C.P.; Shi, T.L. TCMID: traditional Chinese medicine integrative database for herb molecular mechanism analysis. Nucleic Acids Res. 2012, 41, D1089–D1095.
|
[9] |
Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717.
|
[10] |
Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019, 47, W357–W364.
|
[11] |
Liu, X.F.; Ouyang, S.S.; Yu, B.; Liu, Y.B.; Huang, K.; Gong, J.Y.; Zheng, S.Y.; Li, Z.H.; Li, H.L.; Jiang, H.L. PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res. 2010, 38, W609–W614.
|
[12] |
Lee, L.; Wang, K.; Li, G.; Xie, Z.; Wang, Y.L.; Xu, J.C.; Sun, S.X.; Pocalyko, D.; Bhak, J.; Kim, C.; Lee, K.H.; Jang, Y.J.; Yeom, Y.I.; Yoo, H.S.; Hwang, S. Liverome: a curated database of liver cancer-related gene signatures with self-contained context information. BMC Genom. 2011, 12, S3.
|
[13] |
Piñero, J.; Bravo, À.; Queralt-Rosinach, N.; Gutiérrez-Sacristán, A.; Deu-Pons, J.; Centeno, E.; García-García, J.; Sanz, F.; Furlong, L.I. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 2016, 45, D833–D839.
|
[14] |
Rebhan, M.; Chalifa-Caspi, V.; Prilusky, J.; Lancet, D. GeneCards: a novel functional genomics compendium with automated data mining and query reformulation support. Bioinform. Oxf. Engl. 1998, 14, 656–664.
|
[15] |
Szklarczyk, D.; Franceschini, A.; Kuhn, M.; Simonovic, M.; Roth, A.; Minguez, P.; Doerks, T.; Stark, M.; Muller, J.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 2010, 39, D561–D568.
|
[16] |
Dennis, G. Jr, Sherman, B.T.; Hosack, D.A.; Yang, J.; Gao, W.; Lane, H.C.; Lempicki, R.A. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 2003, 4, P3.
|
[17] |
Schiffrin, B.; Radford, S.E.; Brockwell, D.J.; Calabrese, A.N. PyXlinkViewer: a flexible tool for visualization of protein chemical crosslinking data within the PyMOL molecular graphics system. Protein Sci. 2020, 29, 1851–1857.
|
[18] |
Sussman, J.L.; Abola, E.E.; Lin, D.; Jiang, J.; Manning, N.O.; Prilusky, J. The protein data bank. Bridging the gap between the sequence and 3D structure world. Genetica. 1999, 106, 149–158.
|
[19] |
Lill, M.A.; Danielson, M.L. Computer-aided drug design platform using PyMOL. J. Comput. Aided Mol. Des. 2011, 25, 13–19.
|
[20] |
Yip, T.C.F.; Lee, H.W.; Chan, W.K.; Wong, G.L.H.; Wong, V.W.S. Asian perspective on NAFLD-associated HCC. J. Hepatol. 2022, 76, 726–734.
|
[21] |
Ioannou, G.N. Epidemiology and risk-stratification of NAFLD-associated HCC. J. Hepatol. 2021, 75, 1476–1484.
|
[22] |
Baglieri, J.; Brenner, D.; Kisseleva, T. The role of fibrosis and liver-associated fibroblasts in the pathogenesis of hepatocellular carcinoma. Int. J. Mol. Sci. 2019, 20, 1723.
|
[23] |
Ringelhan, M.; Pfister, D.; O’Connor, T.; Pikarsky, E.; Heikenwalder, M. The immunology of hepatocellular carcinoma. Nat. Immunol. 2018, 19, 222–232.
|
[24] |
Wang, K.L.; Chen, Q.; Shao, Y.Y.; Yin, S.S.; Liu, C.Y.; Liu, Y.M.; Wang, R.; Wang, T.; Qiu, Y.L.; Yu, H.Y. Anticancer activities of TCM and their active components against tumor metastasis. Biomed. Pharmacother. 2021, 133, 111044.
|
[25] |
Wang, X.; Wang, Z.Y.; Zheng, J.H.; Li, S. TCM network pharmacology: a new trend towards combining computational, experimental and clinical approaches. Chin. J. Nat. Med. 2021, 19, 1–11.
|
[26] |
Zhou, G.L.; Li, Y.; Li, S.C.; Liu, H.X.; Xu, F.; Lai, X.H.; Zhang, Q.; Xu, J.X.; Wan, S.G. Circulating cell-free mtDNA content as a non-invasive prognostic biomarker in HCC patients receiving TACE and traditional Chinese medicine. Front. Genet. 2021, 12, 719451.
|
[27] |
Yao, H.L.; Zhao, J.L.; Wang, Z.; Lv, J.W.; Du, G.J.; Jin, Y.G.; Zhang, Y.; Song, S.Y.; Han, G. Enhanced anticancer efficacy of cantharidin by mPEG-PLGA micellar encapsulation: an effective strategy for application of a poisonous traditional Chinese medicine. Colloids Surf. B Biointerfaces. 2020, 196, 111285.
|
[28] |
Herraiz, T.; Guillén, H.; Arán, V.J.; Salgado, A. Identification, occurrence and activity of quinazoline alkaloids in Peganum harmala. Food Chem. Toxicol. 2017, 103, 261–269.
|
[29] |
Herraiz, T.; González, D.; Ancín-Azpilicueta, C.; Arán, V.J.; Guillén, H. Β-Carboline alkaloids in Peganum harmala and inhibition of human monoamine oxidase (MAO). Food Chem. Toxicol. 2010, 48, 839–845.
|
[30] |
Yang, A.L.; Wu, Q.; Hu, Z.D.; Wang, S.P.; Tao, Y.F.; Wang, A.M.; Sun, Y.X.; Li, X.L.; Dai, L.; Zhang, J.Y. A network pharmacology approach to investigate the anticancer mechanism of cinobufagin against hepatocellular carcinoma via downregulation of EGFR-CDK2 signaling. Toxicol. Appl. Pharmacol. 2021, 431, 115739.
|
[31] |
Nogales, C.; Mamdouh, Z.M.; List, M.; Kiel, C.; Casas, A.I.; Schmidt, H.H.H.W. Network pharmacology: curing causal mechanisms instead of treating symptoms. Trends Pharmacol. Sci. 2022, 43, 136–150.
|
[32] |
Sun, C.; Hu, A.N.; Wang, S.X.; Tian, B.; Jiang, L.B.; Liang, Y.; Wang, H.L.; Dong, J. ADAM17-regulated CX3CL1 expression produced by bone marrow endothelial cells promotes spinal metastasis from hepatocellular carcinoma. Int. J. Oncol. 2020, 57, 249–263.
|
[33] |
Li, C.; Zhu, Y.; Sun, X.M.; Xu, J.J.; Xiong, D.; Wang, J.; Gao, X.Y.; Chen, X.L. The multiple mechanisms of tripterygium wilfordii-induced acute kidney injury based on network pharmacology and molecular docking. J. Chin. Pharm. Sci. 2021, 30, 556–569.
|
[34] |
Xu, Z.; Xu, M.; Liu, P.; Zhang, S.; Shang, R.Z.; Qiao, Y.; Che, L.; Ribback, S.; Cigliano, A.; Evert, K.; Pascale, R.M.; Dombrowski, F.; Evert, M.; Chen, X.; Calvisi, D.F.; Chen, X. The mTORC2-Akt1 cascade is crucial for c-myc to promote hepatocarcinogenesis in mice and humans. Hepatology. 2019, 70, 1600–1613.
|
[35] |
Spangle, J.M.; Roberts, T.M.; Zhao, J.J. The emerging role of PI3K/AKT-mediated epigenetic regulation in cancer. Biochim. Biophys. Acta BBA Rev. Cancer 2017, 1868, 123–131.
|
[36] |
Alzahrani, A.S. PI3K/Akt/mTOR inhibitors in cancer: at the bench and bedside. Semin. Cancer Biol. 2019, 59, 125–132.
|
[37] |
Mathien, S.; Tesnière, C.; Meloche, S. Regulation of mitogen-activated protein kinase signaling pathways by the ubiquitin-proteasome system and its pharmacological potential. Pharmacol. Rev. 2021, 73, 263–296.
|
[38] |
Sui, X.B.; Kong, N.; Ye, L.; Han, W.D.; Zhou, J.C.; Zhang, Q.; He, C.; Pan, H.M. p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents. Cancer Lett. 2014, 344, 174–179.
|
[39] |
Zhang, H.; Diab, A.; Fan, H.T.; Mani, S.K.K.; Hullinger, R.; Merle, P.; Andrisani, O. PLK1 and HOTAIR accelerate proteasomal degradation of SUZ12 and ZNF198 during hepatitis B virus-induced liver carcinogenesis. Cancer Res. 2015, 75, 2363–2374.
|
[40] |
Brummer, C.; Faerber, S.; Bruss, C.; Blank, C.; Lacroix, R.; Haferkamp, S.; Herr, W.; Kreutz, M.; Renner, K. Metabolic targeting synergizes with MAPK inhibition and delays drug resistance in melanoma. Cancer Lett. 2019, 442, 453–463.
|
[41] |
Yang, J.D.; Ahmed, F.; Mara, K.C.; Addissie, B.D.; Allen, A.M.; Gores, G.J.; Roberts, L.R. Diabetes is associated with increased risk of hepatocellular carcinoma in patients with cirrhosis from nonalcoholic fatty liver disease. Hepatology. 2020, 71, 907–916.
|
[42] |
Huang, J.H.; Chen, F.Y.; Zhong, Z.F.; Tan, H.Y.; Wang, N.; Liu, Y.T.; Fang, X.Y.; Yang, T.; Feng, Y.B. Interpreting the pharmacological mechanisms of huachansu capsules on hepatocellular carcinoma through combining network pharmacology and experimental evaluation. Front. Pharmacol. 2020, 11, 414.
|
[43] |
Sun, J.S.; Jiang, W.T.; Tian, D.Z.; Guo, Q.J.; Shen, Z.Y. Icotinib inhibits the proliferation of hepatocellular carcinoma cells in vitro and in vivo dependently on EGFR activation and PDL1 expression. Oncotargets Ther. 2018, 11, 8227–8237.
|
[44] |
D’Amelio, M.; Cavallucci, V.; Cecconi, F. Neuronal caspase-3 signaling: not only cell death. Cell Death Differ. 2010, 17, 1104–1114.
|
[45] |
Fekry, B.; Ribas-Latre, A.; Baumgartner, C.; Deans, J.R.; Kwok, C.; Patel, P.; Fu, L.; Berdeaux, R.; Sun, K.; Kolonin, M.G.; Wang, S.H.; Yoo, S.H.; Sladek, F.M.; Eckel-Mahan, K. Incompatibility of the circadian protein BMAL1 and HNF4α in hepatocellular carcinoma. Nat. Commun. 2018, 9, 4349.
|
[46] |
Zheng, X.; Chen, J.Y.; Yang, P.H.; Yang, J.; Wen, Z.J.; Zhang, B.H. GIT1 is a novel prognostic biomarker and facilitates tumor progression via activating ERK/MMP9 signaling in hepatocellular carcinoma. Oncotargets Ther. 2015, 3731.
|
[47] |
Kang, T.H.; Park, J.H.; Yang, A.; Park, H.J.; Lee, S.E.; Kim, Y.S.; Jang, G.Y.; Farmer, E.; Lam, B.; Park, Y.M.; Hung, C.F. Annexin A5 as an immune checkpoint inhibitor and tumor-homing molecule for cancer treatment. Nat. Commun. 2020, 11, 1137.
|
[48] |
Xu, F.; Guo, M.M.; Huang, W.; Feng, L.L.; Zhu, J.Z.; Luo, K.K.; Gao, J.; Zheng, B.F.; Kong, L.D.; Pang, T.; Wu, X.D.; Xu, Q. Annexin A5 regulates hepatic macrophage polarization via directly targeting PKM2 and ameliorates NASH. Redox Biol. 2020, 36, 101634.
|
[1] | Mengyao Wu, Lu Liu, Peng Zhang, Lele Zhang, Yun Gong, Xiuwei Yang. Exploring the mechanism of Buxue Yimu Pills on postpartum abdominal pain through network pharmacology and experimental validation [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 691-703. |
[2] | Ping Shang, Lin Liu, Yi Fang. Investigating the mechanism of action of Gui Zhi Fu Ling Wan in the treatment of endometriosis based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 704-719. |
[3] | Gedi Zhang, Gengxin Liu, Ziyou Yan. Therapeutic efficacy evaluation and mechanism of action based on meta-analysis and network pharmacology of Li Chong Decoction (Bolus) for cancer treatment [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(9): 720-735. |
[4] | Eric Wei Chiang Chan, Ying Ki Ng, Hung Tuck Chan, Siu Kuin Wong. An overview of flavonoids from Sophora flavescens (kushen) with some emphasis on the anticancer properties of kurarinone and sophoraflavanone G [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(8): 603-615. |
[5] | Dongyan Wu, Xiaodan Wang, Jinmiao Chai, Qinqing Li, Yue Li, Mei Bi, Wanwei Gui, Huimin Cao. Study on the mechanism of Danggui Buxue decoction in the treatment of diabetic retinopathy based on network pharmacology and experiment [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(7): 527-538. |
[6] | Huan Yan, Jian Wang, Hao Fu, Min Yang, Miao Qu, Zhie Fang. Discussion on the potential target and mechanism of Dachaihu Decoction in treating hyperlipidemia based on network pharmacology [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(6): 446-459. |
[7] | Mengya Wang, Kuanyou Zhang, Xin Chen, Hao Fu, Shouchun Peng. Study on the mechanism of Rhinoceros Horn and Rehmannia Decoction in the treatment of systemic lupus erythematosus based on the method of network pharmacology [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(5): 351-359. |
[8] | Guangzhi Shen, Xingang Cui, Zhimin Na, Yulong Zou, Guihua Zou. A network pharmacology approach to explore the pharmacological mechanism of Epimedium brevicornum in sexual dysfunction [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(5): 379-391. |
[9] | Min Ao, Minglan Bao, Yaxing Hou, Ying Yue, Huifang Li, Guohua Wu, Su Ri Ga La Tu. Study on the mechanism of Mongolian medicine Herba Lomatognii against acute liver injury based on network pharmacology [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(4): 268-282. |
[10] | Yajing Li, Yawen Bai, Yu Du, Changhong Yan, Chunjie Ma, Lining Sun, Fengyue Bu, Haoyang Yan. Yu Ping Feng Powder for chronic glomerulonephritis treatment: A meta-analysis and network pharmacology study [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(12): 1006-1026. |
[11] | Zhiyong Sun, Shuli Gao, Yang Zhang, Gangqiang Xue, Zilin Yuan, Shaonan Wang. Study on the potential mechanism of Pu Gong Ying in treating breast hyperplasia based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 893-910. |
[12] | Yuqian Zhang, Haiying Niu, Yiran Jin. Network pharmacology-based strategy to investigate anticancer mechanisms of Catharanthus roseus (L.) G. Don [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 911-922. |
[13] | Daiying Zhou, Jing Chen, Zhigang Lv. Network pharmacology prediction and molecular docking-based study on the mechanism of Erigeron breviscapus in the treatment of age-related macular degeneratio [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(11): 923-934. |
[14] | Dongsheng Wei, Xiaosheng Liu, Luzhen Li, Jiajie Qi, Yuxuan Wang, Zhe Zhang. Unraveling the biological and immunological mechanisms of safflower-danshen in the treatment of coronary atherosclerotic heart disease: a comprehensive bioinformatics and single-cell sequencing approach [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(10): 796-812. |
[15] | Ning Ding, Tao Zhang, Ji Luo, Haochen Liu, Yu Deng, Yongheng He. Study on the mechanism of Baishao Qiwu Decoction in the treatment of colorectal cancer based on network pharmacology and molecular docking [J]. Journal of Chinese Pharmaceutical Sciences, 2023, 32(1): 17-31. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||